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Abstract—Early diagnosis of Alzheimer’s disease (AD) is es-
sential for timely intervention and effective care. This paper
examines handwriting analysis as an accessible and non-invasive
way of early detection by focusing on the comparison of raw
handwriting images and tabular features. Two data sets were
considered, the DARWIN handwriting dataset, which contains
raw images and tabular data from pen movement, and the
Alzheimer’s disease dataset (ADD), which presents the patient’s
history and cognitive assessments in tabular format. A range
of classification methods including machine learning (Random
Forest, SVM, and XGBoost) was tested on tabular data from
the two datasets, a deep learning Swin Transformer for image
classification, and a multimodal approach that integrated both.
Random Forest outperformed other models on DARWIN tabular
data (83.03% = 1.18), while XGBoost was the best on ADD
(83.53% + 3.44). The Swin Transformer also performed consis-
tently on handwriting images (80.02% =+ 0.87), capturing features
associated with stroke tremors and fluency, as well as other visual
aspects of the dataset. A late fusion model incorporating both
modalities achieved the highest overall accuracy of 89.15% =+
1.73, showing that the image and the tabular features produce
a complementary diagnostic value. These results indicate that
handwriting includes fine neuromotor features related to early
AD that can surpass clinical conventional data. We also present
ablation studies on task order with respect to image training and
end-to-end multimodal learning. These findings provide further
evidence of the benefits of modular fusion in situations where data
is restricted. Handwriting samples have the potential to become
a useable and scalable resource in AD screening because of their
low cost, ease of collection, and acquisition logistics, which even
accommodate home-based settings.

I. INTRODUCTION

Progressive neurodegenerative diseases (ND), such as
Alzheimer’s disease (AD), affect millions of individuals world-
wide. As the most common form of dementia, AD cases
involve devastating memory loss, decline of cognitive and
motor functions, and loss of daily function [1]]. Thus, early
diagnosis is critical to slow progression and improve the
efficiency of subsequent treatment [2].

Handwriting is a complex activity that involves cognitive,
motor and perceptual processes, making it a promising marker
of cognitive impairment [3[], [4]]. In AD, patients often display
disturbances in spatial organization, movement control, and
stroke consistency [4]. Digital tablets allow for a systematic
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study of these effects by collecting raw handwriting images
and fine-grained kinematic features such as pen pressure,
velocity, and spatial coordinates (see Figure |1).

(b) Task 24 — Draw a clock
showing 11:05

Fig. 1: Examples of AD handwriting from the DARWIN
dataset [3]

(a) Task 2 — Join two points
with a horizontal line

Clinical datasets cover an extensive medical history, but
subtle handwriting motor signs capture changes before the
onset of clinical symptoms. There is a critical gap in our
understanding of which data type will yield the most value in
diagnosis: clinical, tabular features, raw handwriting images,
or their combination. The tabular features of handwriting are
well described, while visual representations remain underex-
plored despite their potential to reveal fine-grained patterns
such as tremor or stroke fluidity.

In our study, we combine modalities and demonstrate the
added diagnostic value handwriting images offer, especially,
paired with tabular attributes for early-stage diagnosis. It
investigates the following research question: Can visual hand-
writing signals and motion-derived features result in more
effective early Alzheimer’s diagnosis compared to traditional
medical history information? To address this question, we
focus on three main contributions: (i) analyze the effectiveness
of clinical, tabular, and image-based handwriting features; (ii)
present a fusion model where handwriting images and hand-
crafted tabular features are integrated; (iii) show that late
fusion significantly improves performance and robustness by
leveraging the complementary strengths of both modalities.

II. RELATED WORK

The DARWIN dataset has supported various machine learn-
ing approaches for Alzheimer’s detection, using temporal and
spatial handwriting features. Baseline studies applied support
vector machines (SVM), random forest (RF) and k-nearest-
neighbors (KNN) [J3]], while subsequent studies added ensem-
ble models with SHAP and highlighted key features such
as pen pressure and in-air time [5]. Moving beyond tabular
attributes, new hybrid models incorporate time-series data and



reconstructed handwriting images [6]], while CNNs are also
used to analyze grayscale pen data [7]]. Digital drawing tests
such as DCTclock have also shown superior sensitivity to
mild cognitive impairment compared to Mini Mental State
Examination (MMSE) [8]]. Unlike these unimodal studies, our
study combines DARWIN tabular features and handwriting
images and demonstrates that integration of both modalities
enhances stability and boosts classification efficacy.

III. METHODS
A. Datasets

The DARWIN dataset [ 1] was made for early AD detection
via handwriting analysis and consists of data from 174 subjects
(89 AD and 85 healthy). Each participant has 452 features: 1
ID, 1 class label, and 450 kinematic features from 25 writing
tasks encompassing graphic, copying, memory, and dictation
activities. 18 temporal and spatial features were extracted
from each task, including time, speed, jerk, pressure, motion
metrics, and jerk, covering various parameters of handwriting
motion. Handwriting images are available for six tasks (2, 3, 4,
5, 21, and 24), with almost full coverage for AD participants
(88 out of 89) and somewhat less for healthy controls (78 out
of 85) likely due to consent limitations.

The Alzheimer’s Disease Dataset (ADD) [9] is available
on Kaggle, and contains clinical and demographic data for
2,149 individuals (760 with AD, 1,389 without AD). Each
record contains 34 attributes, including demographic, lifestyle,
and clinical data. A total of 32 attributes (12 numerical, 20 cat-
egorical/binary) were retained after preprocessing. ADD also
contains cognitive (e.g. MMSE) and functional (e.g. Activity
of Daily Living (ADL)) assessments and symptoms reports
such as memory complaints, confusion, and disorientation.

B. Data Preprocessing

To achieve consistency across modalities, the DARWIN
tabular dataset was filtered to include only image data tasks
(2, 3, 4, 5, 21, 24). We kept only those participants who had
images, resulting in 88 AD patients and 78 healthy controls
with complete multimodal data. For the ADD dataset, we
subsampled 166 participants (88 AD, 78 healthy), to achieve
a balanced design that matched the size and class distribution
of DARWIN. Although the two data sets contain different
individuals, this alignment allowed parallel analyses in similar
experimental settings. At the participant level, data splits for
tabular and image experiments were synchronized. For each
random seed, matching IDs were assigned to the training and
test sets in order to achieve a fair comparison and reliable
fusion.

C. Tabular Data Classification

For ADD and DARWIN (tabular), multiple binary classifiers
were trained to distinguish AD patients from healthy controls.
For this purpose, six standard machine learning models were
used: (1) Support Vector Machine (SVM), (2) Logistic Re-
gression (LR), (3) Random Forest (RF), (4) Gaussian Naive

Bayes (GNB), (5) k-Nearest Neighbors (KNN), and (6) XG-
Boost (XGB). These models were chosen considering their
performance on binary classification, probability outputs, and
feature importance.

Each model was evaluated using five Monte Carlo cross-
validation runs (80% training and 20% testing), the results
were averaged and Standard Error of the Mean (SEM) was
reported to show variability. Hyperparameter tuning was per-
formed by grid search, Optuna, and default settings were
used to ensure fair and consistent comparisons across models
while exhaustively searching the parameter space. Stratified
sampling was applied throughout to maintain class balance.

TABLE I: Sample features from DARWIN tabular data for
task 2

Feature Value Description

AIR_TIME2 6,085 Pen-up time (ms)
MAX_X_EXTENSION2 4,945 Max horizontal stroke (px)
PRESSURE_MEAN?2 1,851.08 Mean pen pressure
TOTAL_TIME2 24,870 Task duration (ms)

TABLE II: Sample features from ADD

Feature Value | Description
FAMILYHISTORYALZHEIMERS 0 Family history of AD
DEPRESSION 1 Diagnosed depression
FUNCTIONALASSESSMENT 6.52 Daily function score
MEMORYCOMPLAINTS 0 Memory complaint (yes/no)

D. Image data classification

For handwriting-based AD detection, we employed a fine-
tuned Swin Transformer [[10], chosen for its ability to capture
both local stroke details and global handwriting structure. For
the handwriting images corresponding to tasks 2, 3, 4, 5, 21,
and 24, we resized the images to 224x224, and normalized
them with ImageNet statistics. Consistent with the tabular
experiments, the data was split into 80% training/validation
(divided into 72% training, 8% validation) and the remaining
20% for testing.

To improve generalization, training involved shuffling im-
ages each epoch, while the validation and test sets were
kept constant to allow consistent and reproducible evaluation.
Training used AdamW (learning rate = Se-5), cosine annealing,
cross-entropy loss with label smoothing (¢ = 0.1) and early
stopping (patience = 10) to avoid overfitting. We froze the
lower layers and fine-tuned the deeper layers. The best model
per seed was selected by validation loss and evaluated in the
test set. Generalization was assessed using Monte Carlo cross-
validation (seeds 42—46) and the results were reported as mean
accuracy with SEM.

E. Multimodal Fusion Model

To evaluate the combined predictive power of both image-
based and tabular features, we used a late fusion approach
by aggregating the output probabilities of separately trained
models. For the image modality, we used a fine-tuned Swin
Transformer (see Section to assess handwriting images
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DARWIN Handwriting Task Comparisons (AD vs. Healthy)
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(a) Clock Drawing — AD (b) Clock Drawing — Healthy

(e) Circle Drawing — AD (f) Circle Drawing — Healthy

Fig. 2: Tasks 2 (clock) and 3 (circle) from the DARWIN
dataset, comparing AD (left) and healthy (right) samples.

and generate class probabilities for each participant. For
the tabular modality, we used a RF classifier trained on
the corresponding hand-crafted handwriting features extracted
from the same subset of DARWIN tasks. RF was selected
because it achieved the highest classification accuracy among
all evaluated models in tabular classification experiments (see
Section [[V-A).

For inference, we ensured that each model used the same
participant ID and test split for each random seed. To achieve
this, image filenames were processed to retrieve participant
IDs, which were used to find the corresponding rows of
the tabular test data. Softmax normalized class probabilities
were generated by each model and the final prediction was
made by averaging the two class probability distributions, late
mean fusion. This method provides each modality an equitable
contribution to the final prediction.

Model evaluation employed Monte Carlo cross-validation
using five random seeds (42-46). The accuracy of each seed
was computed and the results were summarized using mean
accuracy and SEM, providing a measure of stability and
generalization.

IV. RESULTS
A. Tabular data

The performance of classical machine learning classifiers
was evaluated on DARWIN handwriting features and the ADD
clinical dataset using five Monte Carlo cross-validation runs.
The results confirm that the clinical data for ADD yielded
slightly higher performance, likely due to its wider diver-
sity of features. Nevertheless, DARWIN tabular features also
demonstrated competitive accuracy, especially with optimized
classifiers. In DARWIN, RF achieved the highest accuracy,
while in ADD, XGB outperformed all other models. The
complete results are reported in Table

B. Handwriting images

The Swin Transformer was evaluated on raw handwriting
images from selected DARWIN tasks. It achieved an average
accuracy of 80.02% (+0.87), with results across seeds ranging

TABLE III: Mean accuracy and Standard Error of the Mean
(SEM) of classifiers on DARWIN and ADD, in bold the best

Classifier

DARWIN

ADD

Random Forest (

XGBoost (XGB)

RF)

Support Vector Machine (SVM)
Gaussian Naive Bayes (GNB)
Logistic Regression (LR)
k-Nearest Neighbors (KNN)

83.03% + 1.18
79.50% + 1.62
78.21% + 2.12
81.29% + 1.99
75.22% + 2.90
82.77% + 4.05

80.59% =+ 2.56
75.88% + 1.10
77.06% + 2.85
76.47% + 3.22
74.12% + 2.53
83.53% + 3.44

from 77.27% to 82.29% (Table [[V). Although image-based
performance did not surpass the best tabular models (e.g.,
RF in DARWIN at 83.03% and XGB in ADD at 83.53%),
it remained strong and consistent in multiple splits. These
results highlight the ability of vision transformers to extract
meaningful patterns from handwriting images and demonstrate
their utility as a standalone diagnostic tool when tabular
features are unavailable.

TABLE 1IV: Classification accuracy of Swin on DARWIN
handwriting images per seed (from 42 to 46) and overall.

Seed Test Accuracy (%)
42 82.29
43 80.65
44 78.92
45 80.95
46 77.27
Mean = SEM 80.02 + 0.87

C. Fusion Results

The multimodal fusion model combining Swin Transformer
image predictions with RF tabular predictions, achieved the
highest overall performance. By averaging the output proba-
bilities, the fusion strategy leveraged complementary strengths
of visual and kinematic features.

As shown in Table [V} it consistently outperformed unimodal
models across five seeds, with a mean accuracy of 89.15%
(*1.73) and individual runs ranging from 84.85% to 93.55%.
This demonstrates the effectiveness of integrating visual and
tabular handwriting data, with fusion surpassing both single-
modality baselines and the best clinical dataset models. It
underscores handwriting as a powerful and practical modality,
capable of supporting scalable diagnostic systems and, in some
cases, outperforming traditional clinical data.

TABLE V: Fusion model accuracy across five seeds (42-46),
combining Swin Transformer image predictions with RF tab-
ular predictions.

Seed Test Accuracy (%)
42 90.62
43 93.55
44 85.29
45 91.43
46 84.85
Mean = SEM 89.15 £ 1.73




V. ERROR ANALYSIS

To better understand model behavior and robustness, we
performed a detailed error analysis comparing the best-
performing seed (43) and the worst-performing seed (46).

A. Confusion Matrices

The confusion matrices for seeds 43 and 46 are in Fig 3] For
seed 43, the model provided balanced performance, correctly
classified all 16 patients and 13 healthy individuals, with only
one false positive and one false negative. Seed 46, on the
contrary, did not produce false negatives, but misclassified five
healthy individuals as patients. In medical screening, false neg-
atives are more problematic as they indicate missed diagnoses
that could delay treatment. Thus, seed 46 is advantageous in
minimizing this critical error, while seed 43 offers fewer total
misclassifications. Although it is preferable for a model to
avoid false positives, the impact of false positives is more
tolerable since they typically lead to further clinical evaluation,
where specialists can rule out pathology and confirm cognitive
status.

Confusion Matrix - Seed 43

Confusion Matrix - Seed 46

True Label
True Label

Patient

Patient
Predicted

Healthy

Healthy
Predicted

Patient

Fig. 3: Confusion matrices for seed 43 (left) and 46 (right).

B. Confidence Distribution Analysis

For both the best performing (seed 43) and the worst
performing (seed 46) runs, the distribution of prediction confi-
dence was analyzed and clear distinctions were noted. In both
cases, higher confidence was associated with correct predic-
tions and lower confidence with incorrect predictions. Seed
43 demonstrated strong calibration, correct predictions were
concentrated within the 0.65-0.95 range, and errors appeared
only with low confidence (below 0.6). Seed 46, however, had
a greater calibration with errors at even moderate and high
confidence (above 0.70) suggesting possible poor calibration
and overconfidence. It was noted that both models had an
understanding of confidence and its correctness, but seed 43
was more reliable and better calibrated in this respect. These
results highlight the value of using confidence thresholds
(e.g., 0.7) in clinical settings to flag uncertain predictions for
expert review, thus reducing the risk of potentially misleading
outputs.

C. The Role of Contribution Balance in Prediction Accuracy

Figure E| shows the contributions of the Swin Transformer,
the RF model, and their agreement in correct predictions
across five seeds. Overall, Swin contributed more frequently
than RF, especially in seeds 43—45, while seed 46 was the

only exception, the RF’s contribution was equal to Swin’s
in cases of disagreement, coinciding with the lowest fusion
accuracy (84.85%). In contrast, the highest accuracy (93.55%,
seed 43) aligned with a strong Swin contribution, indicating its
predictions are more reliable in cases of disagreement. These
findings emphasize that intermodel agreement drives most
correct classifications, but when models diverge, Swin plays
the more decisive role. This underscores the importance of a
well-calibrated visual model within the late fusion framework.

Fusion Contribution (Per Model & Agreement) per Seed
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Number of Correct Predictions
w
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Fig. 4: Proportion of predictions where Swin or RF had higher
confidence, per seed (42-46).

D. Examples Demonstrating the Role of Visual Context

To illustrate the added value of the image-based model,
we investigated cases where Swin accurately predicted AD
while RF failed. Figure [5] presents handwriting samples from
participant id_45, whom RF misclassified as healthy. While
Swin leveraged information across multiple tasks, we present
examples from tasks 2 and 5 as they generated the highest
confidence predictions. In this participant’s tabular features, we
noticed atypically low pressure_var and shorter task com-
pletion times, which statistically resembled healthy dynamics
and likely contributed to RF’s misclassification. In contrast, the
handwriting images enabled Swin to correctly classify the case
by detecting subtle spatial distortions and stroke instability.
Examples like this illustrate the risk of relying solely on
abstracted statistical features and highlight the value of raw
visual input as evidence of detecting cognitive impairment.

Participant id_45 | True: AD | Swin: AD | RF: H
Swin Prob (AD): 0.84 | RF Prob (AD): 0.23

Task 2
Swin P (AD): 0.94

Task 5
Swin P (AD): 0.95

Fig. 5: Tasks 2 and 5 for Participant id_45 (AD). High-
confidence Swin predictions (> 0.94) correctly classified the
case, unlike RF.

VI. ABLATION STUDY

We conducted two ablation studies to examine fundamental
design choices. First, we tested cumulative task-wise learning,



where the Swin Transformer was trained sequentially across
tasks instead of shuffled samples, simulating memory accu-
mulation. The best order (21 + 24 =+ 5 =+ 4 =+ 3 =+ 2)
reached an accuracy of 79.80%, slightly below the baseline,
indicating that task order may influence learning dynamics.
Next, we used an end-to-end multimodal model in which Swin
image embeddings were concatenated with tabular feature
representations from a connected neural network, and passed
through a joint classification head. It achieved 79.92% accu-
racy, underperforming late fusion and suggesting that separate
optimization per modality is more effective with limited data.

VII. COMPUTATIONAL RESOURCES AND LATENCY

The traditional ML models and the fusion model were
run in Python 3.9.13 with scikit-learn 1.2.2 on a workstation
(Intel Core i5-10210U, 16 GB RAM). Training the Random
Forest in the fusion model took 4.3 s, while the full five-run
Monte Carlo cross-validation required 5 min 34 s. The Swin
Transformer was trained in PyTorch 2.6.0+cpu on Lightning
Al with an NVIDIA A100 GPU. Hyperparameter tuning was
performed during cross-validation but is excluded from the
reported time, since it is an offline process.

VIII. DISCUSSION

Our dataset contained handwriting pictures from six simple
drawing activities, including lines, spirals, and basic geometric
shapes. Although useful, these tasks lacked the linguistic
and recall factors known to be strong predictors of cognitive
decline [[11]], expanding to more cognitively complex activities
such as copying, recalling, or dictating sentences or words
would offer more informative input. Even with this limited
input, our models achieved competitive accuracy, and the
fusion technique shows that well-aligned multimodal datasets
of a constrained size can be highly effective.

The results likely differ in part from related work cause of
the smaller scale and limited task variety in our dataset. Prior
studies reported accuracies of 85-94% using larger datasets
and advanced methods [3], [5], [6], [9]. The smaller image-
aligned subsets reached 83.03% in DARWIN and 83.53% in
ADD, strong results but still below the 89.15% of the fusion
approach.

In addition to the value of the performance itself, hand-
writing data can be rapidly and easily collected using digital
technology or scanned paper without requiring any specialized
tools. Handwriting images capture diagnostic cues, such as
tremors, stroke irregularities, hesitation, gaps, and reduced
fluency, that may be overlooked in engineered features. Also,
handwriting tasks can be administered remotely, allowing self-
screening outside clinics. Consequently, handwriting based
analysis can be considered accessible, scalable, and cost-
efficient for the initial stages of AD detection, especially in
low resource environments.

IX. CONCLUSION

This study explored the use of handwriting images
and hand-crafted tabular features in the early detection of

Alzheimer’s using the DARWIN dataset. We looked at tra-
ditional machine learning, a Swin Transformer, and multi-
modal fusion approaches. Each modality showed efficacy,
although the late fusion approach provided the best perfor-
mance (89.15% =+ 1.73) illustrating the benefit of integrating
visual handwriting features with motion-derived information.
Handwriting images often corrected misclassifications from
tabular data, and ablation studies confirmed their robustness
and the superiority of late fusion over joint fusion. Overall,
handwriting emerges as a valuable early screening marker
for Alzheimer’s and can potentially outperform traditional
clinical data. Its low cost, ease of use, and suitability for
remote application offer a unique opportunity for scalable early
detection.
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