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Abstract 

 

Dating papyri accurately is crucial not only to editing their texts, but also for our 
understanding of palaeography and the history of writing, ancient scholarship, material 
culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence 
regarding the time of their production, forcing papyrologists to date them on 
palaeographical grounds, a method often criticized for its subjectivity. In this thesis, 
with data obtained from the Collaborative Database of Dateable Greek Bookhands 
(https://www.baylor.edu/classics/index.php?id=958430, Baylor University) and the 
PapPal (http://www.pappal.info/, University of Heidelberg) online collections of 
objectively dated Greek papyri, we created two datasets of literary papyri and 
documents respectively, which can be used by machines for the task of computational 
papyri dating. By experimenting with this datasets, we showed that deep learning dating 
models, pre-trained on generic images and fine-tuned on a training subset of the data, 
can achieve accurate chronological estimates for a test subset (69.93% accuracy for 
bookhands and 56.76% for documents). To compare the estimates of our models with 
those of humans, experts were asked to complete a questionnaire with samples of 
literary and documentary hands that had to be sorted chronologically by century. The 
same samples were dated by the models in question. This paper presents and analyses 
the results, which show that in some cases the estimates of our models do not deviate 
from the actual date more than those of humans. 

 

 

Keywords: papyri, chronological attribution, machine learning, deep learning, CNN  

https://www.baylor.edu/classics/index.php?id=958430
http://www.pappal.info/
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Περίληψη 
 

Η ακριβής χρονολόγηση των παπύρων είναι ζωτικής σημασίας όχι μόνο για την 
επεξεργασία των κειμένων τους, αλλά και για την κατανόηση της παλαιογραφίας και 
της ιστορίας της γραφής, της αρχαίας επιστήμης, του υλικού πολιτισμού, των δικτύων 
στην αρχαιότητα κ.λπ. Τα περισσότερα αρχαία χειρόγραφα προσφέρουν ελάχιστα 
στοιχεία σχετικά με τον χρόνο παραγωγής τους, αναγκάζοντας τους παπυρολόγους να 
τα χρονολογήσουν με βάση την παλαιογραφία, μια μέθοδο που συχνά επικρίνεται για 
την υποκειμενικότητά της. Στην παρούσα διπλωματική εργασία, με δεδομένα που 
ελήφθησαν από τις Collaborative Database of Dateable Greek Bookhands 
(https://www.baylor.edu/classics/index.php?id=958430, Πανεπιστήμιο Baylor) και 
PapPal (http://www.pappal.info/, Πανεπιστήμιο της Χαϊδελβέργης), διαδικτυακές 
συλλογές αντικειμενικά χρονολογημένων ελληνικών παπύρων, δημιουργήσαμε δύο 
συλλογές δεδομένων με λογοτεχνικούς παπύρους και έγγραφα αντίστοιχα, που 
μπορούν να αξιοποιηθούν από μηχανές για την εργασία της υπολογιστικής 
χρονολόγησης παπύρων. Πειραματιζόμενοι με αυτά τις συλλογές δεδομένων, στη 
συνέχεια, δείξαμε ότι μοντέλα χρονολόγησης βαθιάς μάθησης, προ-εκπαιδευμένα σε 
γενικές εικόνες και προσαρμοσμένα σε ένα υποσύνολο εκπαίδευσης των δεδομένων, 
μπορούν να επιτύχουν ακριβείς χρονολογικές εκτιμήσεις για ένα υποσύνολο δοκιμής 
(67,97% ακρίβεια για τους λογοτεχνικούς παπύρους και 55,25% για τα έγγραφα). Για 
να συγκρίνουμε τις εκτιμήσεις των μοντέλων μας με αυτές των ανθρώπων, ζητήθηκε 
από τους ειδικούς να συμπληρώσουν ένα ερωτηματολόγιο με δείγματα λογοτεχνικών 
χεριών και εγγράφων που έπρεπε να ταξινομηθούν χρονολογικά ανά αιώνα. Τα ίδια 
δείγματα χρονολογήθηκαν από τα υπό εξέταση μοντέλα. Η παρούσα εργασία 
παρουσιάζει και αναλύει τα αποτελέσματα, τα οποία δείχνουν ότι σε ορισμένες 
περιπτώσεις οι εκτιμήσεις των μοντέλων μας δεν αποκλίνουν από την πραγματική 
ημερομηνία περισσότερο από τις αντίστοιχες των ανθρώπων. 

 

Λέξεις κλειδιά: πάπυροι, χρονολογική απόδοση, μηχανική μάθηση, βαθιά μάθηση,    
CNN 

  

https://www.baylor.edu/classics/index.php?id=958430
http://www.pappal.info/
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1. Introduction 

The object of papyrology is reading, studying, interpreting and exploiting ancient texts 
preserved on papyrus (Παπαθωμάς, 2016). In reality, however, we cannot define this 
discipline based on their writing material (Bagnall, 2012), considering that a 
papyrologist also studies texts surviving on parchment, ostraca, wood, bone, stone and 
fabric (but not inscriptions, therefore the writing medium must be portable). These texts 
are exactly the same as the ones surviving on papyrus and they come from the same 
societies and date to the same periods of time (Παπαθωμάς, 2016). Therefore, it would 
be more appropriate to adopt Bagnall’s definition (2012) that “papyrology is a discipline 
concerned with the recovery and exploitation of ancient artifacts bearing writing and of 
the textual material preserved on such artifacts”. 

In terms of content, we can define two main categories of papyri: literary papyri, bearing 
texts of literary interest, and documentary ones, bearing texts of various topics of daily 
life, such as contracts, tax receipts, business letters, etc. (Παπαθωμάς, 2016). 

               

Figure 1: Literary Papyrus1                                             Figure 2: Documentary Papyrus2 

   

Dating papyri is considered particularly important for the interpretation and the 
assessment of their content (Παπαθωμάς, 2016). Documents are often much easier to 
date, since they frequently bear a date or some reference to known people, institutions, 
offices or other evidence helpful to that direction. Nonetheless, chronological attribution 
is not always straightforward: the writers of private letters for the most part did not 
record dates, while literary texts remain dateless (Turner, 1987). So what methods do 
papyrologists apply in these cases? 

Turner (1987) in his work “Greek Manuscripts of the Ancient World” describes some of 
the methods employed for papyrus dating. In some cases, archaeological evidence may 

                                                             
1 P. 6845: Homer, Ilias 8, 433–447. Source: https://berlpap.smb.museum/01720/, Berlin Papyrus 
Database (BerlPap)  
2 P.Cair.Zen. 1 59029: letter from Antimenes to Zenon. Source: 
http://ipap.csad.ox.ac.uk/4DLink4/4DACTION/IPAPwebquery?vPub=P.Cair.Zen.&vVol=1&vNum
=59029  

https://berlpap.smb.museum/01720/
http://ipap.csad.ox.ac.uk/4DLink4/4DACTION/IPAPwebquery?vPub=P.Cair.Zen.&vVol=1&vNum=59029
http://ipap.csad.ox.ac.uk/4DLink4/4DACTION/IPAPwebquery?vPub=P.Cair.Zen.&vVol=1&vNum=59029
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be of assistance, like the papyri from Herculaneum, which we know were written before 
79 BC., when the volcano of Vesuvius erupted. Furthermore, when a document and a 
literary papyrus are found together in a mummy cartonnage, we can trust the date of the 
dated documents as a terminus ante quem for the literary text, since both papyri were 
discarded at the same moment as useless paper. More trustworthy are the dates we can 
extract when the backside of a papyrus is reused. More specifically, when there is a 
dated document on the front side (the recto side), then we know that the text on the 
back (the verso side) was written or copied after the date of the dated document. 
Conversely, if the dated document is on the back of the papyrus, we know that the text 
on the front was written or copied before the date of the document. However, in this 
case we cannot be sure of the time gap between the two. In the event that none of the 
above evidence is offered for dating, we can take into account the content, such as 
events that are described or “exploit fashions in ‘diplomatic’ usage, such as the use of 
and form taken by abbreviations” (Turner, 1987). 

The method used predominantly to get more accurate results, especially when all the 
other criteria are absent, is based on palaeography, i.e. the study of the script. Dating on 
palaeographical grounds is based on the assumption that graphic resemblance implies 
that the two manuscripts are contemporary (Mazza, 2019), as literary papyri are 
written in elaborate and conservative more formal writing styles that remain unchanged 
for decades or even centuries, whereas documentary papyri are almost always written 
in cursive scripts3 that can be dated with relative accuracy (Παπαθωμάς, 2016). 
However, this distinction is not absolute, considering that, as stated by Choat (2019), 
“many dated documents, and the scripts of some of these are sufficiently similar to those 
of literary papyri for them to form useful comparanda to the latter” and, as Mazza 
(2019) adds, frequently documentary papyri are written in literary scripts and vice 
versa literary papyri are copied in documentary scripts. Therefore, it is obvious that 
relying solely on palaeography is a great challenge that presents plenty and 
considerable difficulties. For the chronological attribution of a papyrus, the papyrologist 
should have “a wide range of potential comparanda and have them available for easy 
consultation” (Choat, 2019). This is not an easy task nor can be achieved without the 
proper training. Besides, as stated above, the fact that literary texts almost never bear a 
chronological indication, results in a very small number of literary papyri, securely 
dated, that can form a basis for comparison.  On the other hand, to estimate the date of a 
papyrus one should take into account all the parameters, like the provenance, the 
context, the content, the language, the dialect, the codicology, the page layout, the 
general appearance of the script, the specific letter shapes of the papyrus under 
examination. (Choat, 2019). Lastly but most importantly, we should not overlook the 
subjectivity of the whole method, a parameter to which, according to Choat (2019), is 
given less regard than should be. 

Given all these difficulties on the one hand, and the growing development and 
application of computational means and tools on various disciplines of the humanities 

                                                             
3Turner (1987) gives a rather explicit definition of the cursive scripts stating that “the term 
‘cursive’ derives from the concept of a scribe writing in a ‘running’ movement and lifting his pen 
as infrequently as he can. Normally he is thought of as applying this running movement to a 
group of several letters which he will write in a single sequence.” 
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on the other, in recent years many attempts have been made to date manuscripts with 
the help of computational means. In reality, what these tools and techniques are trying 
to achieve is the chronological attribution of the manuscripts, based on the 
palaeographic assumption of the affiliation of scripts, described above, trying, 
nonetheless, to eliminate the subjective element of this method and to assist the work of 
palaeographers-papyrologists. 

In this thesis, with data obtained from two online collections of securely dated papyri 
(one set consists of literary papyri and the other of documents), we create two machine-
actionable datasets, suitable for the task of computational papyri dating. Then, we 
exploit machine learning methods on these datasets to train classifiers for chronological 
classification of papyri. The training of the classifiers aims to achieve successful date 
estimates of undated papyri. We must emphasize that in no case is our goal to replace 
traditional dating methods, but to create an additional tool for papyrologists and, along 
with their experience and specialized knowledge, to achieve more secure dating of the 
papyrus manuscripts. 

This thesis begins with an overview of relevant studies to date and the methods applied 
for the task of computational manuscript dating. It is followed by a brief description of 
the datasets created for the purposes of the thesis and a detailed description of the 
experiments and their results. Finally, the results of a questionnaire given to experts 
with samples that had to be sorted chronologically are analyzed and compared with 
those of our models, while the last part of the dissertation presents useful research 
findings. 

 

2. Related Work 

The use of computer means on manuscript images in order to estimate their date of 
production, the computational papyri dating, is not a novelty, as it can be seen from the 
study of the relevant literature, discussed in this chapter (Table 1). Furthermore, it is of 
particular interest the fact that for the computational papyri dating, similar methods to 
those used for writer identification are exploited. By writer identification we mean the 
recognition of the writer/ scribe of a manuscript based on writing styles (Dhali et al., 
2017) and, according to Hamid et al. (2019), this problem and that of manuscript dating 
are related to each other4. For this reason, it is considered rather useful to present a few 
relevant works and the methods displayed in them for the task of writer identification.  

 

 

                                                             
4 This can be easily inferred from the study of the literature. Hamid et al. (2018) maintain that “It 
is evident from literature survey that most techniques proposed for automated manuscript 
dating are inspired from writer identification and classification”. Also, Wahlberg et al. (2016) say 
that “lately automatic writer identification techniques have been applied to dating”. Similarly, He 
et al. (2016) as well as Dhali et al. (2020) present techniques (features) for date estimation, 
previously applied in writer identification problems. 
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 Pub. 
Year 

Evaluation Method Language Period Dataset name # Images Finding 

Baledent et al. 2020 Macro F-measure 
+ Similarity  

  DT/RF Latin/French 1600 
-1720CE 

GALLICA + 
DEFT2010 

8,000 from 
GALLICA 

Char > Word 

Dhali et al. 2020 MAE + CS  SVR Hebrew 250BC - 
135AD 

Dead Sea Scrolls 595  Capturing 
handwriting 
evolution is 
promising 

Hamid et al. 2019 MAE + CS CNN+SVM Dutch 1300-
1550CE 

MPS 3,267 DL and TL help 

Adam et al.  2018 Accuracy ΚΝΝ Arabic 8th -
14thCE 

KERTAS 2,000+ Whole images 
of different 
sizes  were used 

Hamid et al. 2018 MAE SVM/KNN/
DT/LDA 

Dutch 1300-
1550CE 

MPS 3,267 LDA preferred 

Wahlberg et al. 2016 MSE+ percentiles 
of the absolute 
errors 
 

CNN+GP/ 
SVR 

Swedish/ 
Latin 

1050- 
1523CE 

Svenskt 
diplomatariums 
huvudkartotek 

10,000+ ImageNet & 
10% fine-
tuning data 
reach the 
human 
baseline 

Li et al.  2015 MAE + Accuracy CNN + Word 
Embeddings 

English 1500-
1900CE 

Google books 
corpus 

4,036 
volumes 
(up to 50 
pages from 
each) 

An OCR-based  
predictor beats 
an image-based 
CNN; the 
combination 
works best.  

Wahlberg et al. 2015 MSE, RMSE + 
percentiles from of 
the distribution of 
absolute 
estimation errors 

KNN+GP Swedish/ 
Latin 

1050- 
1523CE 

Svenskt 
diplomatariums 
huvudkartotek 

10,000+ MAE<19 
although less 
than 5-% was 
used to “train” 

He et al. 2016a MAE  + CS SVM Dutch 1300-
1550CE 

MPS 2,858 They applied 
writer 
identification to 
date. 

He et al. 2016b MAE  + CS SVM Dutch 1300-
1550CE 

MPS 2,858 When same 
writer appears 
in both training 
and test sets 
results are 
better 

He et al 2014 MAE  + CS SVM Dutch 1300-
1550CE 

MPS 2,858 Linear SVR 
performs better 

Soumya and 
Kumar 

2014 percentage of 
correct predictions 

RF ancient 
Kannada 
scripts 

Periods 
 of six  
dynasties 

Canadian script 110 Epigraphs were 
studied  

Table 1: Studies of computational manuscript dating 
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Baledent et al. (2020) compared character-level methods with token-level ones for 
dating purposes. They selected about 8000 Latin and French documents from 1600 to 
1720 from the French digital library GALLICA. The selected documents have plain text 
access, which in reality is a bad and non-corrected OCR output. Furthermore, 
experiments were conducted on a comparable dataset, the DEFT2010 (Grouin et al., 
2010), from another period which also had OCR issues. The GALLICA corpus was split 
into a training (70%) and a test set (30%) with the imbalance between the different 
classes being maintained, whereas for the DEFT2010 corpora the already separated data 
between train and test was kept. The results showed that a character-level model can 
handle noise properly to improve classification results as compared to a classical token-
level model. Moreover, it became apparent that Decision Trees give good results and 
Random Forest even better ones. 

Dhali et al. (2020) exploited the Dead Sea Scrolls, a collection of ancient manuscripts 
written in the Hebrew alphabet (derived from Aramaic script) and mostly from 250 BC 
to 135 AD to create a model that predicts the date of a manuscript. Their study was 
based on the assumption that the general writing style of each period can be determined 
if the change of handwriting style over time is captured. Then the date of a document 
can be easily found by comparing its handwriting style to the general styles of the 
periods. On account of this, six textural and one grapheme-based feature extraction 
methods were employed and compared to transform the writing style into a feature 
vector. For the date estimation, Support vector regression with a radial basis kernel was 
used. The evaluation results showed that the grapheme-based method is considerably 
more efficient (MAE: 23.4 years) than the textural methods (with lowest MAE: 42.4 
years). 

Hamid et al. (2019) used transfer learning on a number of popular pre-trained 
Convolutional Neural Network (CNN) models in order to estimate the year of production 
of sample documents from the MPS dataset. The manuscripts were divided into small 
patches, from which features were extracted with the employment of pre-trained CNN. 
Also, a number of well-known CNN was fine-tuned on the set of images. The CNN-
extracted features were fed into a support vector machine (SVM) classifier, which 
returned the year of production of a query document as the result of the combination of 
the decisions on its individual patches with the use of majority vote. The results showed 
that the Mean Absolute Error (MAE) was significantly reduced compared to existing 
work on the same problem. 

Adam et al. (2018) proposed a dataset, the KERTAS dataset, consisting of more than 
2,000 high-quality and high-resolution images of historical Arabic manuscripts dated 
from 8th to 14th CE, suitable for testing algorithms for age and authorship detection. In 
their experimental task of age detection, they applied the sparse representation-based 
method introduced by Wright et al. (2009) that uses normalization to choose the nearest 
sub-space to the document being evaluated and compared it with three handwriting 
style-based features. They used two splits, one with predefined folds and one random, 
and reported accuracy. Moreover, they employed the k-Nearest Neighbor.  For the 
evaluation of the sparse representation-based method they used whole images with no 
cropping to study both the writing and the layout style and different image sizes starting 
from 12x12. The highest accuracy is reported when the image size is 50x50. For the 



[21] 
 

evaluation of the handwriting style-based features, the segmented and binarized text 
areas were used and according to the results the sparse representation-based method 
scored the highest accuracy of all handwriting style-based features (94.77%) on the 
predefined folds and the lowest (42.31%) on the random splits. 

Hamid et al. (2018) performed a comparative analysis of popular textural features for 
the aim of document dating. They used a combination of individual features (Gabor 
filters, Uniform Local Binary Patterns and Histogram of Local Binary Patterns) to extract 
a 345- dimensional feature vector, which was then fed to a number of classifiers: 
Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Decision Trees (DT) and 
Linear Discriminant Analysis (LDA). These features were evaluated individually as well 
as combined on the Medieval Paleographical Scale (MPS) dataset, which contains 3267 
images of charters written during the years 1300-1550 CE in Medieval Dutch language. 
According to the results, the combination of Gabor filter features with histograms of LBP 
features perform better than individual features and LDA leads to improved 
classification results. 

Wahlberg et al. (2016) proposed the employment of deep convolutional neural network 
(CNN) to estimate the date of production of hand-written documents. They maintain 
that a CNN can be used directly for date estimation purposes (full network use) or as a 
feature learning framework for regression (output layer replacement). In their work 
they explored the latter approach and used Gaussian Processes regression and Support 
Vector Regression on the Swedish collection Svenskt Diplomatariums huvudkartotek 
(SDHK). For the experiments the GoogleNet architecture was employed and a model 
pre-trained on the Imagenet dataset for 120000 iterations (parameter updates) was 
used to initialize the model. During the evaluation phase, they showed that, when using 
the CNN only for feature learning, 10% of the collection is needed for fine-tuning the 
pre-trained, and that the performance can be on average compared to that of a human 
expert. 

Li et al. (2015) used CNN to estimate the publication date of historical English-language 
documents printed between the 15th and 19th century. They conducted both 
classification and regression tasks. They built an Image model with Convolutional 
Neural Network that takes as input a patch of a gray scale image of the document and a 
Text model with the help of a bag of words, created by an OCR result and used to 
represent each document as a vector with values that correspond to the number of 
times each term occurs and the number of out-of vocabulary words.  Then this vector 
was used as input of the neutral network. Finally, they built a Combined model with a 
CNN that takes both visual and text features as input. For the classification task, they 
grouped the data into 4 classes of periods of time and used the accuracy metric for 
evaluation, whereas for the regression task, they rounded the estimated year, and 
reported the mean absolute error (MAE). As a baseline, for the classification task, they 
guessed the most common class, and for the regression task, they guessed the midpoint. 
All three models outperformed the baseline and it was proved that in both classification 
and regression tasks the combined model is the best of all and the Text model the 
second best. 
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Wahlberg et al. (2015) developed a method for large-scale dating of medieval 
manuscripts, which takes a grey-scale image of a document and with the 
implementation of the stroke width transform and a statistical model of the gradient 
image makes sure that the edge pixels always belong to pen strokes. These edges are 
then analyzed using the shape context descriptor to create a distribution over common 
shapes on each manuscript page. The evaluation of the method was carried out on the 
manuscripts collection “Svenskt diplomatariums huvudkartotek” and consisted of over 
10000 medieval charters and written in Swedish and Latin. An unweighted k-NN 
regression, and then, to improve the results, Gaussian process (GP) regression were 
employed. Even though a 5% subset for training was used, the median absolute error 
was below 19 years. 

He et al. (2014; 2016a; 2016b) in their works tried to estimate the year on which 
charters from the MPS collection were written. In their 2014 study (He et al. ,2014), they 
proposed a global and local regression method, in which several textural features, like 
the Hinge feature and the Fraglets feature, already successfully employed for writer 
identification are used. It is a three-step method: Global regression, Local support-set 
selection and Local regression. They trained a linear SVR and non-linear SVR method 
both for global and local regression. Their results outperformed a conducted random 
guess, though the Mean Absolute Error (MAE) of the proposed method is still high (35.4 
years). In their 2016 study (He et al., 2016a), they applied a family of local contour 
fragments (kCF) and stroke fragments (kSF), which are scale and rotation invariant, 
grapheme-based features, capable of capturing the writing style of the documents. These 
features were encoded into trained codebooks to form statistical histograms, the 
normalizations of which are the final representations of handwritten documents. They 
performed dating by handwriting style identification and by classification. According to 
the results, features which perform well for writer identification are not necessarily that 
effective at dating historical documents. Furthermore, the classification task showed 
that the combination of kCF and kSF achieves optimal results (MAE of 14.9 year when 
the same writer is not included in both training and test sets, and 7.9 years when data 
are randomly split) while, the experiments conducted by classification with different 
sizes of codebooks of the kCF and kSF revealed that the MAE decreases as the size of the 
codebook increases. In their later work (He et al., 2016b), they used a scale-invariant 
mid-level Polar Stroke Descriptor (PSD) to extract and describe the meaningful 
handwritten patterns in historical document images. Then, they mapped these patterns 
into a common space (named codebook), to form a histogram, the normalization of 
which is considered as the feature representation of the handwritten document. They 
trained 11, corresponding to the number of the key years, classifiers using a linear SVM 
and evaluated their method on MPS dataset, applying two scenarios: they split the 
dataset in a way that the same writer is not included in both training and test sets and 
randomly. The results demonstrate that the latter scenario performs better (MAE of 7.8 
years, while the first scenario has a MAE of 15.1 years) and that the performance 
improves as the size of the codebook increases. Also, this method is proved to be the 
most effective of the three presented. 

Similar methods were applied for the period estimation not of a manuscript but of an 
epigraph by Soumya and Kumar (2014). They developed a system that takes gray scale 
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images of epigraphs written on ancient Kannada script and belonging to periods defined 
by 6 dynasties (Ashoka, Satavahana, Kadamba, Chalukya, Rastrakuta and Hoysala).The 
images are binarized and segmented to characters. For the classification, features are 
extracted from the segmented characters and used to train the Random Forest (RF) 
classifier. After training, the user selects the epigraph image whose era is to be 
estimated. The image is binarized, segmented to characters and RF classifies the feature 
vectors of each segment to one of the classes. Finally, the era of the input epigraph is the 
majority of eras of the classified segments. Experiments were carried out on 110 
Kannada epigraph images from different eras and the system showed good results with 
up to 85% accuracy for the era identification. 

Nasir and Siddiqi (2020) exploited CNN to extract features from digitized historical 
papyrus manuscripts and identify their writers. The manuscripts were pre-processed 
and densely sampled to produce small writing patches, from which machine-learned 
features were extracted with the use of a number of pre-trained CNN. The CNN was fine-
tuned using a large dataset of contemporary writings, the IAM handwriting dataset 
(Marti and Bunke, 2002), and, then, further tuned on the papyrus images from GRK-
dataset. To characterize the writer of a manuscript, patch level decisions were combined 
to document level, by applying a majority vote on patch level decisions and the results 
showed identification rates of up to 54% among 10 different scribes. 

The problem of writer identification was addressed with the use of similar methods in 
two studies (Mohammed et al., 2018; Mohammed et al., 2019). In the former 
(Mohammed et al., 2018) the research team proposed a method against common 
degradation types of historical manuscripts in order to identify their writers. For this 
purpose, they applied systematically generated degradation on 100 pages of 
manuscripts selected from the “Stiftsbibliothek” library of St. Gall collection (a virtual 
manuscript library of Switzerland). Their method, the Normalized Local Naive Bayes 
Nearest-Neighbour Classifier, takes into account the particularity of handwriting 
patterns by adding a constraint to prevent the matching of irrelevant keypoints. 
Keypoints are spotted using Scale Invariant Feature Transform (SIFT) (Lowe, 2004) and 
Features from Accelerated Segment Test (FAST) (Rosten et al., 2010). Experiments 
showed that SIFT keypoints can cope better with samples of different resolutions, while 
FAST keypoints can cope better with samples of a very low contrast or a very low 
resolution. Some of the authors of this study in 2019 (Mohammed et al., 2019) proposed 
a dataset of Greek papyri manuscripts suitable for the task of writer identification. The 
GRK-dataset comprises 50 handwriting samples on contracts written by ten different 
notaries of the 6th century A.D. and was selected by experts for the application of 
computational-based methods. During the experiments, two image processing and 
enhancement techniques were applied to enhance the performance of the Normalised 
Local NBNN classification with FAST keypoints, which was used as a learning and 
segmentation-free method. The results demonstrate only 30.0% identification rate on 
the GRK-Papyri dataset with leave-one-out criteria (a version of all the 50 images 
together was used) and 26.6% identification rate with training-test criteria (a version 
with a training folder of 20 images -two for each scribe- and a test folder of 30 images 
was used). 
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Dhali et al. (2017) conducted a pilot experiment to identify the writers of the Dead Sea 
Scrolls (DSS) collection using several hand-crafted features. They binarized the 
manuscript images using Otsu’s method (Otsu, 1975) and applied one grapheme-based 
and eight textural-based feature extraction methods. The pilot study was based on two 
distinct sets of writers: a limited sample of 323 labeled regions of interest, the 
FragmROIs, having been written by 13 scribes and a limited sample of 124 FragmROIs, 
having been written by 13 scribes. The nearest neighbour classification method was 
performed using the leave-one-out strategy. The results were not the best to be 
expected, leading the experimental group to proposing statistical modelling, transfer 
learning, and data augmentation for this limited collection of ancient manuscripts. 

Xing and Qiao (2016) proposed DeepWriter, a deep multi-stream CNN for extracting 
writer-sensitive features. The experiments were conducted on IAM (consisted of 
unconstrained handwritten English text from 657 different writers) and HWDB 
(consisted of handwritten Chinese text from 300 different writers) datasets. Firstly, they 
resized the image of the text while maintaining the aspect ratio, cropped this resized 
image into patches and uniformly sampled them for testing. On IAM dataset, the 
DeepWriter was fine-tuned from the, pre-trained on HWDB1.1 dataset, Half DeepWriter 
model. On HWDB1.1 dataset, the Half DeepWriter was fine-tuned from the above 
DeepWriter model. The results showed that the models achieve high identification 
accuracy with little handwritten text input.: 99.01% on 301 writers and 97.03% on 657 
writers with one English sentence input, 93.85% on 300 writers with one Chinese 
character input.  

The majority of the works on chronological attribution of manuscripts or writer 
identification discussed mainly refer to manuscripts written in scripts other than Greek 
from the medieval or later periods. This may be explained if we take into consideration 
that among the Greek papyrological corpus, dated samples are very scarce, since dating 
a manuscript was not a common practice among Greek scribes in antiquity (unlike the 
medieval times, where they often mention the date of completion in the colophon). Thus, 
putting together a training set of objectively dated hands is a challenge. Furthermore, 
most of the mentioned manuscripts fall into the category of documents. The aim of this 
thesis is the chronological attribution of both documentary and literary papyri in Greek 
script from antiquity (3rd century B.C.) to the Middle Ages (9th century A.D.). 

3. Data  

All the data used in the experiments were drawn from two open online collections of 
manuscripts: the Collaborative Database of Dateable Greek Bookhands (CDDGB)5 and 
the PapPal6. 

The Collaborative Database of Dateable Greek Bookhands (CDDGB) is an online 
catalogue of ancient Greek manuscripts written in literary script, from the 1st to the 9th 
century A.D, hosted by Baylor University. The data it contains can be dated based on 
some kind of objective dating criterion, such as the presence of a document that contains 
a date on the reverse side, or a datable archaeological context associated with the 
                                                             
5 https://www.baylor.edu/classics/index.php?id=958430 
6 http://www.pappal.info/ 

https://www.baylor.edu/classics/index.php?id=958430
http://www.pappal.info/
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manuscript. The list of papyri included in this dataset could have been more 
comprehensive, a task already undertaken by two ongoing—and much anticipated—
projects (ref. from the intro of the CDDGB website). However, for lack of a better 
alternative and since the collection of objectively dated bookhands goes beyond the 
scope of this thesis, the CDDGB dataset is deemed adequately reliable for our purpose. 
Moreover, it is unlikely that a complete list of securely dated literary papyri would 
increase the number of specimens beyond the lower hundreds, unlike the documentary 
ones reaching well into the fourth thousand. Table 2 below shows in detail the 
distribution by century of the image data taken from the CDDGB dataset. The total 
number of images used is 255. It is worth mentioning, that all manuscripts written in 
minuscule script were excluded, due to the fact that minuscule Greek cannot be placed 
confidently into the script evolution process and it does not fall within the area of 
interest of this thesis. 

 

Century 
Number of 

images 

1stBC 1 

1stAD 20 

2ndAD 87 

3rdAD 71 

4thAD 18 

5thAD 7 

6thAD 13 

7thAD 2 

8thAD 6 

9thAD 30 

Total number 
of images 

255 

Table 2: Distribution of images from CDDGB per century  

 

The PapPal is a collection of ancient papyri dated from the 3rd century B.C. to 8th century 
A.D., originating mainly from Greco-Roman Egypt. This collection contains documents 
that aim to be a reliable point of reference for the scientist who aspires to study the 
evolution of the ancient scripts in time and in some cases in space, and therefore assist 



[26] 
 

in dating non-dated papyri. Furthermore, the different hands that appear at 
contemporary level, can demonstrate the variety of writing styles that co-existed in a 
particular period. It should also be noted that this collection contains, in addition to the 
papyri images, a number of ostraca (about 400), which for the purposes of this thesis 
are not useful. The total number of images extracted from the PapPal dataset is 3326 
and their distribution per century is shown in Table 3. 

 

Century 
Number of 

images 

3rdBC 814 

2ndBC 581 

1stBC 109 

1stAD 341 

2ndAD 326 

3rdAD 346 

4thAD 297 

5thAD 162 

6thAD 257 

7thAD 64 

8thAD 29 

Total number 
of images 

3326 

Table 3: Distribution of images from PapPal per century 

 

All images taken from these collections vary in format (images from CDDGB are in jpg 
and png format, while from PapPal in jpg, png and gif) and resolution. To create two 
datasets, one for each type of papyrus, that can be used by computational approaches 
for the purpose of papyrus dating, we downloaded the images manually and then 
renamed them. Image file names took the form shown in Figure 3, with an indication of 
the century, underscore and the name of the manuscript as it appears in the dataset. 
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Figure 3: Example of the renamed images 
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4. Methodology 

In this chapter we will outline the computational methods we applied in our 
experiments. Our purpose is not to describe in detail how each method operates, but to 
give a simple and understandable overview of them. 

4.1. Machine learning (ML) 

As mentioned in the introduction to this thesis, we applied machine learning methods to 
our data for the purpose of chronologically classifying papyri images. In our 
experiments we opted for supervised learning, which is more suitable in cases of few 
clearly labeled data (Mahesh, 2020). More specifically, supervised machine learning uses 
labeled data that is divided into a training and a test set (Mahesh, 2020). Algorithms 
detect and learn the relationships between patterns in the training set and their labels 
and, then, try to apply what they have learned by determining labels to the unknown 
patterns in the test set (Kramer, 2013). 

 

Figure 4: Supervised learning workflow (source: Mahesh, 2020) 

Having taken into account the above, we applied the following machine learning 
algorithms to train models on one part of our data (training set) and to evaluate their 
performance on chronological attribution of the rest (test set): K-nearest neighbor 
classifier (KNN) 7, Support Vector Machines for Classification (SVC) 8, Decision 
Tree 9 , Random Forest 10 , Gaussian Processes Classifier 11  and Multi-layer 
perceptrons classifiers (MLP)12. 

4.2. Deep learning 

To improve the performance of the presented machine learning algorithms, we applied 
deep learning methods on our data. Deep learning is a subset of machine learning and its 
methods use multiple processing layers to learn representations of data sets (LeCun et 

                                                             
7 https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html   
8 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html 
9 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
10 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
11 https://scikit-
learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html 
12 https://scikit-
learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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al., 2015; Rusk, 2016). A Deep Learning algorithm automatically extracts the features 
necessary for classification without the need for prior data processing (Lauzon, 2012; 
Rusk, 2016). In particular, each level learns a concept from the data that subsequent- 
higher layers build on. The higher the level, the more abstract the concepts that are 
learned (Rusk, 2016). 

However, as already mentioned, Deep Learning methods need large amounts of training 
data, in order to understand their latent patterns and extract the necessary features. As 
the number of our data, presented in Chapter 3, is insufficient for a Deep Learning model 
we applied transfer learning.  Transfer learning is a machine learning methodology, 
which is based on the fact that acquired knowledge can be applied to solve new 
problems with faster and more effective solutions (Pan and Yang, 2010). In other words, 
transfer learning is a tool that transfers to the target domain the knowledge contained in 
related source domains (Zhuang et al., 2020). Domains, tasks, and data distributions of 
the test and training set do not have to be the same (Pan and Yang, 2010), and the model 
in the target domain does not need to be trained from scratch. In this way, the problem 
of insufficient data is significantly addressed, while the training time of the model is 
reduced (Tan et al, 2018). 

The deep learning model we chose to use in our experiments is VGG-16. VGG-16 is a 
convolutional neural network model (ConvNet13) with a depth of 16 weight layers 
proposed by Simonyan and Zisserman (2014). The model loads a set of weights pre-
trained on ImageNet, a dataset of over 14 million images belonging to 1000 classes. The 
input for VGG-16 is a fixed size of 224 x 224 pixels with 3 channels for an RGB image. 
The image is passed through a stack of convolutional layers of 3x3 filter with a stride 
fixed to1 pixel, while five max-pooling layers of 2x2 filter of stride 2 follow some of these 
conv. layers and carry out spatial pooling. The stack of the conv. layers is followed by 
three Fully- Connected (FC) layers, the first two of them with 4096 channels each, and 
the third with 1000 channels.  The final layer is the soft-max layer14. All hidden layers 
are equipped with the rectification (ReLU) non-linearity. The architecture of VGG16 is 
presented in Figure 5. VGG-16 is used in many deep learning image classification 
problems. This model won the 1st place in the localization task and the 2nd place in the 
classification in 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC).  

                                                             
13 ConvNets are a type of Deep networks designed to process data that come in the form of 
multiple arrays (LeCun et al., 2015) 
14 The softmax layer is the final layer of some neural networks, which receives values from the 
previous layer and adjusts the probability of each class (Mueller and Massaron, 2019, 139). 
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Figure 5: VGG-16 architecture15  

 

It should be noted that this particular ConvNet model was used as a feature extractor 
and not as a predictor. For this purpose, we removed the final two layers (the final fully 
connected and the softmax), resulting in the last layer having 4,096 output nodes16.  
Then we applied the described machine learning algorithms on the frozen features17 of 
this model. 

The second deep learning model we chose for our experiments is a deep convolutional 
neural network model, the Residual Network50 (ResNet50), with a depth of 50 weight 
layers proposed by He et al. (2016). The ResNet architecture introduced skip or shortcut 
or residual connections that skip one or more layers to avoid information loss during 
training (Talo, 2019). The architecture of the model is shown in Figure 6. The model 
consists of a 7x7 convolutional layer with a stride of 2, followed by a 3X3 max-pooling of 
stride 2. Then stacks of conv. layers follow and all conv. layers are complied with these 
rules: for the same output feature map size, the layers have the same number of filters 
and if the feature map size is halved, the number of filters is doubled. At the end of the 
network there is a global average pooling layer and a 1000-way fully-connected layer 
with softmax (He et al., 2016). The ResNet model is pre-trained on the ImageNet 2012 
classification dataset that consists of 1000 classes and won the first place at the ILSVRC 
2015 classification task and at the ILSVRC & COCO 2015 competitions. 

                                                             
15 Source: https://www.researchgate.net/figure/VGG-16-network-architecture-for-feature-
extraction_fig1_335184836  
16 This method was proposed in https://towardsdatascience.com/how-to-cluster-images-based-
on-visual-similarity-cd6e7209fe34.  
17 When we freeze a layer of a model during training, we prevent its weights from being altered, 
thus we maintain the starting weights of the network layers. This may be necessary to optimize 
training results (Wu et al., 2019). The features extracted from these layers are called frozen 
features. 

https://www.researchgate.net/figure/VGG-16-network-architecture-for-feature-extraction_fig1_335184836
https://www.researchgate.net/figure/VGG-16-network-architecture-for-feature-extraction_fig1_335184836
https://towardsdatascience.com/how-to-cluster-images-based-on-visual-similarity-cd6e7209fe34
https://towardsdatascience.com/how-to-cluster-images-based-on-visual-similarity-cd6e7209fe34
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Figure 6: ResNet50 architecture (source: He et al. 2016) 

 

In our experiments we fine-tuned the pre-trained ResNet50 model on a part of our 
image data and we evaluated on the rest.  In other words we employed transfer learning 
to classify the papyri images into categories-classes of centuries.  
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5. Experiments and Results 

5.1. Data Preprocessing 

As mentioned in chapter 3, our data comprise images of various formats and resolution 
analysis. In order to apply the presented machine learning algorithms on them, we had 
to do the appropriate preprocessing. First of all, we should note that we worked 
separately for the literary papyri and separately for the documents. Specifically, we used 
the Κeras library18  to upload the images from the folder of each type in PIL Format19 by 
selecting 224x224 as the target size. Then, we used the function numpy.array from the 
NumPy library20 to convert each image into an array, as such input is expected by the 
machine learning algorithms. The results obtained for each image were stored into a 
dictionary. At the same time, in the same dictionary with "label" as a key we saved the 
first five characters of each image, which as mentioned in Chapter 3, indicate the date of 
the papyrus, and with "filename" as a key the whole filename of the image. In this way, 
we got a dictionary for each type of papyrus including the arrays of their images, the 
corresponding labels and their respective filenames. 

We then took the image arrays and their corresponding labels from the dictionaries, in 
order to train our models. However, the array of our images had 4 dimensions (number 
of samples, 224 rows, 224 columns, 3 channels) while the algorithms expect arrays with 
2 dimensions. For this purpose, we applied the function numpy.reshape21 from the 
numPy library, which gives a new shape to the arrays without changing the data and we 
got a 2 dimensional array (number of samples, 150528 feature vectors).  

As the arrays had a very large size, we used the Principal Component Analysis (PCA) 
technique from the scikit-learn library22 setting the number of components we wanted 
to keep to 100. PCA is a technique that performs dimensional reduction. That is to say, it 
identifies similarities in the structure of data in order to summarize them using less 
information (Mueller and Massaron, 2019). Thus, it projects the data in a smaller space 
making it easier for the computer to manage. The final array we obtained was a two-
dimensional array (number of samples, 100 feature vectors). 

The final pre-processing step we followed was the normalization of the two-dimensional 
array. Specifically, we divided the array (each feature) by its maximum value in order to 
scale all the values from -1 to1. 

To split the samples into training data and test data, we used from the scikit-learn 
library the train_test_split23, setting 20% of the samples as a test set. We repeated this 
split three times, so that for each type of papyrus we have three randomly selected 
training-test sets. 

                                                             
18 https://keras.io/api/preprocessing/image/ 
19 For PIL format see more on https://pillow.readthedocs.io/en/stable/index.html 
20 https://numpy.org/doc/stable/ 
21 https://numpy.org/doc/stable/reference/generated/numpy.reshape.html 
22 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html 
23 https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html  

https://keras.io/api/preprocessing/image/
https://pillow.readthedocs.io/en/stable/index.html
https://numpy.org/doc/stable/
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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5.1.1. For the application of VGG-16 as feature extractor 

As VGG-16 operates with batches of images, after uploading the images, from the folder 
of each papyrus type, in PIL Format and converting them into an array with 3 
dimensions (224 rows, 224 columns, 3 channels) we applied the function numpy.reshape 
in order to add a further dimension that would show the number of images given to the 
model. The next step was to pass the 4 dimensional array to the preprocess_input24   
method imported for Keras library so as to convert the input images from RGB to BGR 
and zero-center each color channel with respect to the ImageNet dataset, without 
scaling. Subsequently, from Keras Library we imported VGG16 model25  removing the 
final two layers (the final fully connected and the softmax) so that the last layer would 
have 4.096 output nodes. Finally, to extract the desired features with VGG-16 model we 
applied the predict method26. 

The rest of the process is similar to the one presented above. The results obtained for 
each image were stored into a dictionary, along with their labels (the first five 
characters of each image filename), and their filenames. Then, as the array of our images 
had 3 dimensions (number of samples, 1 row, 4.096 columns), we had to apply the 
function numpy.reshape to get a 2 dimensional array (number of samples, 4.96 feature 
vectors). Finally, we applied the normalization of the two-dimensional array, already 
described, in order to scale all the values from -1 to1 and split the samples into training 
data and test data, by following the same procedure, in order to obtain three randomly 
selected training-test sets27.  

5.1.2. For the application of ResNet50 model 

To prepare our data for the ResNet50 model, we applied similar preprocessing steps to 
those discussed in section 5.1. Specifically, for each of the two types of papyri, we 
uploaded the images in PIL Format by selecting 224x224 as the target size and we used 
the function numpy.array to convert each image into an array with 4 dimensions 
(number of samples, 224 rows, 224 columns, 3 channels). The results (arrays) obtained 
for each image were, then, stored into a dictionary, along with their labels (the first five 
characters of each image filename), and their filenames. Then, the images’ arrays and 
their corresponding labels were taken from this dictionary for train the model. 

In order to fine-tune ResNet50 we used ktrain28, which is a lightweight wrapper for the 
deep learning library TensorFlow Keras. First of all, in order to define the training and 
the test data for our experiment, we used the train_test_split, (from the scikit-learn 
library) and set 20% of the samples as a test set. Then, we employed the 
images_from_array29 function from ktrain to get an image generator from training and 
validation data in NumPy arrays using the training set along with its labels as training 
data, setting 20% of this data as validation and giving a list of the class names. 
                                                             
24 https://keras.io/api/applications/vgg/#vgg16-function  
25 https://keras.io/api/applications/vgg/#vgg16-function 
26 https://keras.io/api/models/model_training_apis/ 
27 The three training-test sets are different from those of the first experiment described in section 
5.1. 
28 https://github.com/amaiya/ktrain 
29 https://amaiya.github.io/ktrain/vision/index.html#ktrain.vision.images_from_array 

https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/models/model_training_apis/
https://github.com/amaiya/ktrain
https://amaiya.github.io/ktrain/vision/index.html#ktrain.vision.images_from_array
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5.2. Experiments  

The machine learning classifiers used in our first two experiments (KNN, SVC, Decision 
Tree, Random Forest, Gaussian Process, MLP) were implemented by scikit-learn library 
using the default parameters and accuracy, macro precision, macro recall and macro F1 
scores, implemented by scikit-learn library30 too, were used as classification metrics to 
measure their performance. 

During our first two experiments, we also applied the Monte Carlo Cross Validation, a 
method first proposed by Picard and Cook (1984).  Specifically, for both the literary 
papyri and the documents, with the assistance of each classifier, we trained three 
models using the three training sets -one for each model- and evaluated them in their 
respective test sets. Then, we calculated and recorded the average scores obtained from 
the evaluation of these three models. The process is explicitly presented in Figure 7. 

 

 

Figure 7: Method applied for each algorithm 

  

5.2.1. Fine-tuning of the ResNet50 model 

In ResNet50 experiments, we did not apply the Monte Carlo Cross Validation but, as 
already discussed in section 5.1.2., we defined only a training- test set, meaning that we 
used the training set to fine-tuning the model and the test set to evaluate its 
performance. 

                                                             
30 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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After the pre-processing phase, we had to select the model to be fine-tuned, which in our 
case is the, pre-trained on ImageNet, ResNet50 model. Before fine-tuning, we applied 
the get_learner31 function to get a useful for our task learner instance, in which model 
and data are wrapped. 

In order to fine-tune the model on our data, we froze the first 15 layers (their weighs are 
applicable as is32), with the learner.freeze method and trained our model using the 
learner.autofit method. It should be noted that we did not define the number of epochs, 
thus autofit trained until the validation loss stopped improving33 after a certain period, 
defined with the early_stopping argument (in our case was 5). Moreover, the autofit 
method decreased the learning rate when validation loss stopped reducing, which can 
be defined with the reduce_on_plateau argument (in our case was 2)34.  

5.3. Baselines 

Furthermore, we applied the DummyClassifier35 from the scikit-learn library, which 
makes predictions using simple rules. In particular, we chose the most frequent strategy, 
in which the classifier always predicts the most frequent label in the training set and the 
uniform, in which the classifier generates predictions at random. Our aim was to use 
these simple classifiers as baselines and compare their performance with that of the 
proposed algorithms. Moreover, we should note that for the evaluation of the 
performance of the Dummy Classifiers we followed the same procedure as with the rest, 
that is we fitted the Dummy Classifiers using the three randomly selected training sets 
and we evaluated them on the corresponding test sets. Their final scores resulted from 
the calculation of the average of these three evaluations. 

5.4. Results 

The results of the experiments per classifier, including that of the Dummy Classifiers 
(baselines), for literary papyri are presented in Table 4. 

 

Classifiers F1-score precision recall accuracy 

KNeighborsClassifier 33.56% 34.30% 36.78% 45.75% 

SVC 15.59% 20.10% 18.02% 41.18% 

DecisionTreeClassifier 14.55% 15.65% 14.65% 28.10% 

RandomForestClassifier 30.43% 38.71% 28.85% 41.83% 

                                                             
31 https://amaiya.github.io/ktrain/index.html#ktrain.get_learner  
32 https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-
classification.ipynb.  
33 https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-
introduction.ipynb.  
34 https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-
introduction.ipynb.  
35 https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html 

https://amaiya.github.io/ktrain/index.html#ktrain.get_learner
https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-classification.ipynb
https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-classification.ipynb
https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb
https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb
https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb
https://nbviewer.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
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GaussianProcessClassifier 8.00% 8.51% 12.65% 33.99% 

MLPClassifier 10.06% 14.58% 13.37% 33.99% 

Baseline: most frequent 5.73% 3.79% 11.80% 32.03% 

Baseline: random 5.64% 7.82% 6.03% 9.15% 

Table 4: Results by classifier for literary papyri 

 

Figure 8 shows all scores per classifier for literary papyri. What we observe is that most 
classifiers scored higher accuracy scores compared to the other metrics. In general, all 
classifiers scored low and in some cases they barely outperformed the baselines. 
Furthermore, it can be seen that the KNN Classifier outperformed the other classifiers in 
all metrics except the precision metric at which it is in second place behind the Random 
Forest. We also notice that the Gaussian Process, the MLP and the Decision Tree 
Classifier scored lower than the other classifiers (Decision Tree Classifier scored lower 
accuracy even than the baseline: most frequent). 

 

 

Figure 8: Average scores for literary papyri 

 

Table 5 shows the results of the experiments per classifier and the baselines, for 
document papyri. 
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Classifiers F1-score precision recall Accuracy 

KNeighborsClassifier 27.95% 30.14% 28.17% 39.59% 

SVC 24.76% 31.45% 26.22% 44.24% 

DecisionTreeClassifier 19.30% 19.19% 20.14% 26.93% 

RandomForestClassifier 23.71% 43.66% 23.36% 41.74% 

GaussianProcessClassifier 16.93% 18.58% 19.68% 38.29% 

MLPClassifier 24.80% 28.27% 25.59% 40.49% 

Baseline: most frequent 3.69% 2.31% 9.09% 25.43% 

Baseline: random 7.74% 8.96% 8.18% 9.36% 

Table 5: Results by classifier for documentary papyri 

 

Figure 9 summarizes all of the above scores per classifier for documentary papyri. We 
notice that the models did not score high with the exception of their performance in 
accuracy that presents a slightly better image compared to that of the other metrics. 
Behind the accuracy, most classifiers scored higher precision scores compared to other 
metrics, while F1 and recall scores move at similar levels for each classifier. The 
performance of the classifiers per metric shows gradations with the Decision Classifier 
and Gaussian Process Classifier recording the lowest scores. However, in the case of the 
documents all models in all metrics outperformed the baselines. 

 

Figure 9: Average scores for documentary papyri 
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5.4.1. Deep Learning Results 

As the results from our first experiments were not very impressive, we tried to apply 
deep learning methods to our data. Specifically, in our new experiments we used the 
VGG-16 ConvNet as feature extractor, after removing the last two layers, and then 
applied the machine learning algorithms on the frozen features, as already described in 
our methodology chapter. Finally, as a last experiment we used transfer learning and 
tried to fine-tune a pre-trained on image data deep learning model, the ResNet50 model. 

Table 6 shows the results of the experiments conducted with the use of the VGG-16 
model by classifier, including the Baselines, for the literary papyri. 

 

Classifiers F1-score precision recall accuracy 

KNeighborsClassifier 39.93% 40.71% 46.39% 52.29% 

SVC 27.69% 29.25% 29.71% 55.56% 

DecisionTreeClassifier 28.58% 30.88% 29.37% 42.48% 

RandomForestClassifier 33.32% 40.39% 32.38% 50.98% 

GaussianProcessClassifier 62.44% 72.07% 61.89% 69.93% 

MLPClassifier 60.02% 67.94% 57.71% 63.40% 

Baseline: most frequent 7.29% 5.05% 13.10% 38.56% 

Baseline: random 8.66% 9.95% 10.32% 12.42% 

Table 6: Results by classifier for literary papyri with VGG-16 

 

Figure 10 summarizes all the above scores per classifier after the use of the VGG-16 
model for literary papyri. We notice that the performance of all classifiers is better than 
baselines with the exception of the accuracy metric, in which the baseline: most frequent 
scored quite a high score, which the Decision Tree Classifier barely outperformed. In all 
other cases the differences in the performance of classifiers-baselines are quite high. We 
can also see that the Gaussian Process Classifier and the MLP Classifier recorded the 
highest performance, reaching or even exceeding 60% in some metrics. Conversely, the 
SVC and the Decision Tree Classifier scored the lowest. Finally, we observe that most 
classifiers, with the exception of the MLP and the Gaussian Process Classifier, scored 
higher accuracy compared to other metrics.  
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Figure 10: Average scores for literary papyri with VGG-16 

 

Table 7 shows the results of the experiments conducted with the use of the VGG-16 
model by classifier, including the Baselines, for documents. 

Classifiers F1-score precision recall accuracy 

KNeighborsClassifier 37.86% 45.32% 36.91% 47.00% 

SVC 34.75% 43.89% 34.50% 52.80% 

DecisionTreeClassifier 22.33% 22.23% 22.69% 33.03% 

RandomForestClassifier 31.18% 43.99% 30.42% 49.40% 

GaussianProcessClassifier 42.58% 55.46% 40.22% 53.10% 

MLPClassifier 47.91% 52.06% 46.09% 56.76% 

Baseline: most frequent 3.74% 2.36% 9.09% 25.93% 

Baseline: random 7.85% 8.76% 8.25% 9.21% 

Table 7: Results by classifier for documentary papyri with VGG-16 

Figure 11 shows all scores per classifier for documentary papyri after the use of the 
VGG-16. It can be seen that the performance of all classifiers in all metrics outperformed 
the baselines to a significant extent. All classifiers scored higher accuracy and precision, 
with the exception of the Baselines: most frequent. Moreover, we observe that F1 and 
recall scores move for each classifier at similar levels. The differences in the 
performance of the classifiers per category do not present a special gradation with the 
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highest scores being achieved by the Gaussian Process Classifier and MLP Classifier and 
the lowest in most cases by the Decision Tree Classifier and Random Forest Classifier. 

 

 

Figure 11: Average scores for documentary papyri with VGG-16 

 

Table 8 presents the results of the experiments conducted with the use of ResNet50 
model for literary papyri. 

 

Classifier F1-score precision recall accuracy 

ResNet50 29.75% 22.71% 22.86% 35.29% 

Table 8: : Results for literary papyri with the use of the ResNet50 model 

Figure 12 illustrates the F1, precision, recall and accuracy score of the ResNet50 model 
on the literary papyri. It can be observed that the scores are quite low (below 50%) and 
the model scored highest in accuracy metric.   
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Figure 12: ResNet50 scores for literary papyri 

 

Table 9 presents the results of the experiments conducted with the use of ResNet50 
model for documetary papyri. 

 

Classifier F1-score Precision recall accuracy 

ResNet50 39.63% 32.49% 33.93% 46.85% 

Table 9: Results for documentary papyri with the use of the ResNet50 model 

 

Figure 13 shows the F1, precision, recall and accuracy score of the ResNet50 model on 
the documents. It can be noticed that the scores are quite low (below 50%), though 
better than those on the literary papyri. Furthermore, the accuracy score and then the 
F1- score are the highest scores.  
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Figure 13: ResNet50 scores for documents 

 

5.5. Learning Curves  

Another task we carried out in the context of our experiments was the plotting of 
learning curves. Learning curves are displays of the performance of an algorithm with 
respect to the quantity of data used for training (Mueller and Massaron, 2016). With the 
help of learning curves we can determine the extent to which the models suffer from 
high variance or bias. In case of high variance, the models make complex hypotheses, i.e. 
they fit training data very closely (fit noise along with real training data tends), and as a 
result they cannot generalize to future data, a phenomenon called overfitting. On the 
other hand, in case of high bias the models make simple and inflexible hypotheses, i.e. 
they fit the data too loosely (miss real trends along with noise), a phenomenon called 
underfitting (Briscoe and Feldman, 2011).  

In general, when we have high variance we can reduce it either by adding more data or 
by reducing the number of features or fixing the parameters of the algorithm. On the 
other hand, in cases of high bias we should increase the number of features or use a 
more complex algorithm (Mueller and Massaron 2016). Ideally, the learning curves - the 
one validated on the training set and the one validated on the test set- should start at 
different points and as we add data they should become close to a common accuracy 
score (Mueller and Massaron, 2016).  

In our experiments, we plotted the learning curves of the models for the documents. 
First of all, we utilized the division of data into three training-test sets, described in 
section 5.1 and created for each of the three training sets portions of growing size (500, 
1000, 1500, 2000 and 2660 which is the whole training set). We then trained three 
models on these portions of the training sets - each model on the portions of a training 
set - and recorded their accuracy score on both the same training data and on the entire 
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corresponding test set. Finally, we calculated the average accuracy score of the three 
models validated on the training data and the one validated on the test set and we 
plotted them on two curves, one for the training sets results and the other for the test 
sets results36.  

Figure 14 illustrates the learning curves per classifier. For each algorithm we have made 
a curve that represents the average accuracy score of the algorithm on the test set (solid 
red line) and on the training data (solid blue line). Also, for both curves we have plotted 
with dashed lines of the same colors the estimates for their course if we trained the 
algorithm on more data. 

The curves of the KNN classifier seem to rise as we train the algorithm on more data 
without converging. Even the estimated curves seem to come slightly closer, but their 
distance remains quite considerable.  In a case like this, we say that we have high 
variance. A similar occurrence can be detected in the case of SVC, in which the curves 
are noticeably close to each other but, according to the estimates, they will further 
converge towards a common accuracy score if more data are added. This too is a case of 
high variance that can be addressed by adding data. 

The curves of Decision Tree Classifier and Random Forest Classifier are similar. In these 
cases, the curves of the training set remain stable at maximum score regardless of the 
amount of the training data and the curves of the test set rise as we add data- in the case 
of Decision Tree slightly to not at all, whereas in the case of Random Forest they rise 
considerably. Both classifiers suffer from the phenomenon of overfitting. 

In the case of the Gaussian Process Classifier, the curves seem to converge, before 
adding the estimated curves. However, their convergence point shows a very low 
accuracy score, which indicates high bias. 

Finally, in the case of the MLP Classifier, the curves appear to become close to each 
other, but there is still quite a distance between them. Nonetheless, if we add more data, 
the curves become closer, and their distance is stabilized at the desired point. This is 
again a case of high variance that can be addressed by adding data.  

                                                             
36 The process is described by Mueller and Massaron (2016). 
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Figure 14: Learning curves per classifier 

 

5.5.1 Learning Curves after the use of VGG-16 

Similarly, to our first experiments, after using the deep learning model, VGG-16, we 
designed learning curves for each algorithm for the documents and presented them in 
Figure 15. The design follows the same logic as that of our first experiments: for each 
algorithm the solid red curve represents the average accuracy score of the algorithm on 
the test set and the solid blue curve on the training data. Additionally, for both curves 
we have plotted with dashed lines of the same colors the estimates for their course if we 
trained the algorithm on more data. 

The curves of the KNeighbors Classifier have a rising course as we train on more data 
and, as it can be observed from the estimates, the distance between them decreases at a 
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very slow pace. This is a case of high variance that can be resolved by increasing the 
amount of data. Likewise, the distance between the two curves of SVC is quite large. 
Nonetheless, the estimates show that adding more training samples will help them 
become close to a common score. And here, we have the phenomenon of high variance 
that can be addressed by adding data. 

The curves of the rest algorithms are significantly similar to each other. In all cases the 
curves of the training set remain almost invariable - with a slight decrease or increase - 
at the maximum score regardless of the amount of the training data. On the other hand, 
the curve of the test set for the Random Forest Classifier, the Gaussian Process Classifier 
and the MLP Classifier increases with the addition of data, while for the Decision Tree 
Classifier increases slightly, even after the estimated data addition. All this cases indicate 
overfitting (high variance). 

 

Figure 15: Learning curves per classifier after the use of VGG-16 
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6. Comparison between the results of the experiments 

In this chapter we present comparatively the results of our experiments with the use of 
the VGG-16 features, without it and with the use of the fine-tuned ResNet50 model for 
the literary and the documentary papyri. Our purpose is to demonstrate in an apparent 
way the difference between the scores before and after the application of the pre-
trained deep learning models. 

In Figure 16 we present the F1, precision, recall and accuracy scores for the literary 
papyri with and without the use of the VGG-16 model as well as with the use of the 
ResNet50 model. It can be noticed that in all metrics the VGG-16 enhanced the 
performance of all classifiers. The Gaussian and the MLP, which scored the lowest (along 
with the Decision Tree) before the application of the deep learning model, demonstrated 
the greatest improvement and the best performance after its application in all metrics. 
On the other hand, the KNN and the Random Forest showed the lowest enhancement on 
their performance. As for the ResNet50 model, it can be observed that in F1, precision 
and recall metrics, outperformed most of the classifiers without the use of VGG-16, but 
only in F1 metric scored higher than some of the classifiers (SVC and Decision Tree) 
with the use of VGG-16 features. 

 

Figure 16: Comparison of scores for literary papyri 
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Figure 17 illustrates the F1, precision, recall and accuracy scores for the documents with 
and without the use of the VGG-16 model as well as with the use of the ResNet50 model. 
In all metrics the application of the VGG-16 improved the scores of all classifiers that did 
not employ deep learning methods. Furthermore, we can notice that in F1, precision and 
recall metrics the Gaussian Process had the worst performance without the use of the 
VGG-16 and the best or the second best after its use. The fine-tuned ResNet50 model 
outperformed most of the classifiers that did not use deep learning and in some metrics 
scored higher than some of the classifiers that employed VGG-16. However, it should be 
noticed that all models in all metrics had a mediocre performance, as they scored lower 
than 60%. 

 

 

Figure 17: Comparison of scores for documents 
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7. Results using MAE and MSE metrics 

In this chapter we present the results of the evaluation of all our models using the Mean 
Absolute Error (MAE) and the Mean Squared Error (MSE) metrics, implemented by 
scikit-learn library37. To calculate the MAE, we add the absolute of the difference of the 
predicted value from the ground truth of all the samples of the test set, and divide it by 
the total number of samples. Thus the MAE is defined as: 
 

MAE (y, ŷ) =
1
𝑁𝑁

  � |𝑦𝑦𝑖𝑖 − ŷ𝑖𝑖|
𝑁𝑁−1

𝑖𝑖=0

 

 
where N is the number of samples, y is the ground truth and ŷ is the predicted value38. 
To calculate the MSE we add the square of the difference of the predicted value from the 
ground truth of all the samples of the test set, and divide it by the total number of 
samples. Thus the MSE is defined as: 

MSE (y, ŷ) =
1
𝑁𝑁

  �(𝑦𝑦𝑖𝑖 − ŷ𝑖𝑖)2
𝑁𝑁−1

𝑖𝑖=0

 

 
where N is the number of samples, y is the ground truth and ŷ is the predicted value39. 
As can be seen from their definition, the MAE and MSE metrics show how far a model 
has failed in its estimates (in our case how many centuries) in relation to ground truth, 
something that cannot be seen from the metrics used in the previous chapters. 
Moreover, if these metrics show the failure of the models it is obvious that a lower MAE 
and MSE indicate a better performance. Finally, we should mention that in our first two 
experiments (Machine Learning and Deep Learning with the employment of VGG-16) in 
which we trained three models for each classifier, we calculated the average of the MAE 
and MSE of these three models. 
 
In Figure 18 the Mean Absolute Error (MAE) of all the models used in our experiments 
for the literary papyrus is presented. What it can be easily noticed, is that the MAE is 
lower after the application of VGG-16 model features. Gaussian Process and then MLP, 
both with VGG-16, outperformed the rest classifiers. Moreover, ResNet50 scored lower 
MAE than almost all classifiers that did not employ deep learning methods, but higher 
than those who employed VGG-16 features. 
 

                                                             
37 https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html, https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html.  
38 https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error.   
39 https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error.  

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
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Figure 18: MAE for literary papyri. The numbers represent centuries 

 

In Figure 19 the Mean Absolute Error (MAE) of all the models used in our experiments 
for the documentary papyrus is illustrated. First of all, we can see that MLP and then 
Gaussian Process along with SVC, all with the use of VGG-16, scored the lowest MAEs. 
Furthermore, it is quite obvious that the use of the VGG-16 model enhanced the 
performance of the classifiers. As for the ResNet50 model, it can be observed that it 
scored lower MAE than all classifiers that did not employ deep learning methods, and 
lower even than Decision Tree and Random Forest after the use of VGG-16. 
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Figure 19: MAE for documents. The numbers represent centuries 

 

Figure 20 shows the Mean Squared Error (MSE) of the models used in our experiments 
for the literary papyri. What we notice is that the Gaussian Process and the MLP 
Classifier, both with the employment of VGG-16 model, scored the lowest MSEs. 
Additionally, we can see that the performance of all classifiers without the use of deep 
learning methods is quite poor compared to the one after the employment of deep 
learning models. The fine-tuned (on our data) ResNet50 model scored lower MSE than 
almost all classifiers that did not use the VVG-16 model (except for the Random Forest) 
but higher than those who used VGG-16’s features.  
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Figure 20: MSE for literary papyri. The numbers represent centuries 

  

Figure 21 presents the Mean Squared Error (MSE) of the models used in our 
experiments for the documentary papyri. The Gaussian Process and the MLP Classifier 
with the use of VGG-16 again had the best performances, whereas the Gaussian Process 
Classifier without VGG-16 scored the highest MSE and, consecutively, had the poorest 
performance of all the models. On the other hand, the ResNet50 model scored lower 
MSE error than all models without VGG-16 and the Decision Tree and Random Forest 
with VGG-16.  

 

Figure 21: MSE for documents. The numbers represent centuries 
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8. Questionnaire 

8.1. Sample Selection 

To compare the estimates of the models with those of the papyrologists, we created a 
questionnaire (for the questionnaire click here) addressed to people specialized in the 
field of papyrology, doctoral researchers and experts. The survey involved 1 Ph. D. 
student and 4 experts, who were asked to estimate the date of a total of 20 papyrus 
samples (10 literary and 10 documents) without consulting any online or printed 
source. Respondents were asked to state their level of education, from which derives 
their degree of familiarity with the papyri, and to give one or more date estimates per 
sample, along with the method on which they were based for the estimate/s. The three 
methods of chronological estimation given as options were: the prior knowledge of the 
papyrus sample, the discovering of a hint on the date in the papyrus text and the 
recognition of the writing style. 

The samples included in the questionnaire were selected as follows: we selected five 
random samples from the total of 255 images of literary papyri from the CDDGB 
database and five random samples from the total of 3326 images from the PapPal 
database. 

Then, as we wanted to see the opinion of the experts on the papyri that the best of our 
models failed to successfully classify (models that employ VGG-16 features), we selected 
5 images of literary papyri following the procedure shown in Figure 22: for each of the 
three test sets of literary papyri, we collected the samples whose date all 6 classifiers 
failed to estimate correctly. We compared these samples with each other to find 
common images. As for the literary papyri no common samples of the test sets were 
found between the failures of the models, we joined the samples (those from each test 
set whose date all 6 classifiers failed to estimate correctly) and we got five of them at 
random. 

 

Figure 22: Selection of literary papyrus samples for the questionnaire 

 

https://docs.google.com/forms/d/e/1FAIpQLSc_jIITq8KW_p-VJV5DAXK_EukMCkWEspPE_tJOUENnsKjtww/viewform?usp=sf_link
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Similarly, we selected 5 document images following the procedure shown in Figure 23. 
For each of the three test sets of documents, we collected the samples whose date all 6 
classifiers failed to estimate correctly and, then, we compared the samples with each 
other to find common images. As 8 common document samples were found among the 
models’ failures, we selected five of them at random. 

 

 

Figure 23: Selection of documentary papyrus samples for the questionnaire 

 

8.2. Results 

While collecting the results of the questionnaire, in cases of duplicate answers we 
decided to apply the following: 

·If one of the answers-estimates was correct, we accepted only this one. 

·If none of the answers-estimates were correct, we accepted the one closest to the 
correct century. 

Following this, for the ten samples of literary papyri the results of the answers of the 
respondents are summarized below. 

First of all, the average percentage agreement, the degree to which all pairs of 
respondents agree on average, is only 37%, a score that could be said to some extent 
confirms the wording for the subjectivity of the method. Table 10 presents the accuracy, 
F1, MAE and MSE scores per respondent along with their average. What should be 
mentioned is that Respondent 3 did exceptionally well on the estimates, whereas 
Respondent 2 scored the lowest scores in all metrics, though the MAE is only 2.1 
centuries. The average accuracy of all respondents is not quite high, while F1 is a bit low. 
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Metrics 
Respondent 

1 
Respondent 

2 
Respondent 

3 
Respondent 

4 
Respondent 

5 
Average 

Accuracy 40.00% 20.00% 90.00% 60.00% 40.00% 50.00% 

F1-score 23.81% 11.43% 73.33% 42.50% 19.05% 34.02% 

MAE 1.3 2.1 0.1 1.2 1.4 1.22 

MSE 3.7 8.5 0.1 4.2 4.4 4.18 

Table 10: Scores of respondents for literary papyri. On MAE and MSE the numbers represent 
centuries. 

As for the ten samples of documents, the results of the answers of the respondents are 
summarized below: 

Their average percentage agreement is 26% lower than that of literary papyri. The 
accuracy, F1, MAE and MSE scores per respondent along with their average is illustrated 
in Table 11. It can be noticed that Respondent 3 had again the best performance with 
80% accuracy and a MAE of only 30 years. Nevertheless, the average accuracy and the 
F1 are not very high. 

 

Metrics 
Respondent 

1 
Respondent 

2 
Respondent 

3 
Respondent 

4 
Respondent 

5 Average 

Accuracy 20.00% 50.00% 80.00% 60.00% 10.00% 44.00% 

F1-score 11.22% 43.89% 68.89% 54.76% 4.17% 36.59% 

MAE 2.8 1.1 0.3 0.7 2.6 1.5 

MSE 14.2 3.5 0.5 1.9 10.4 6.1 

Table 11: Scores of respondents for documents. . On MAE and MSE the numbers represent 
centuries. 

8.3. Comparison of the results of the questionnaire with our models 

In order to compare the estimates of the respondents for the papyrus samples with 
those of our models, we decided to train our models on all the samples of the literary 
papyri leaving out only the ten samples we used in the questionnaire and for which we 
would get estimates from the models. Similarly, for the documents we trained the 
models using all the data except the ten samples of the questionnaire. As the best scores 
for the literary papyri and for the documents were given by the Gaussian Process 
Classifier and the MLP Classifier, both with the use of VGG16 as feature extractor, we 
decided to train our models with these two algorithms. The reason why we chose to 
retrain models was to ensure that none of the samples would be in the classifiers' 
training set and therefore known to the models. 
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After training the models and evaluating them in the ten images of the papyri, initially 
for the literary papyri we found the following: our two models agree 80% with each 
other, though without scoring high accuracy and F1, as can be observed from Table 12. 
Nonetheless, their MAE and MSE are quite low, something that indicates that the two 
models do not fail much in their estimates.   

 

Metrics Gaussian Process Classifier MLP Classifier Average 

Accuracy 40.00% 50.00% 45.00% 

F1-score 36.00% 48.00% 42.00% 

MAE 1.0 1.0 1.0 

MSE 3.0 3.2 3.1 

Table 12: Scores of models on questionnaire literary samples. . On MAE and MSE the numbers 
represent centuries. 

 

Table 13 presents the results of our models on the ten documentary papyri images. First 
of all, we should note that the two models agree only 50% with each other. Moreover, 
we can notice that our model did not perform well in any of the metrics and the MLP 
Classifier scored lower than the two. 

 

Metrics Gaussian Process Classifier MLP Classifier Average 

Accuracy 30.00% 20.00% 25.00% 

F1-score 20.83% 15.24% 18.04% 

MAE 2.9 3.5 3.2 

MSE 14.5 18.1 16.3 

Table 13: Scores of models on questionnaire documentary samples. . On MAE and MSE the 
numbers represent centuries. 

 

In Figures 24-27 we present the accuracy, F1, MAE and MSE of each respondent along 
with the average of all respondents for the literary papyri. The scores are presented in 
comparison with those of the MLP and Gaussian Process Classifiers, shown with a dark 
and a light green line respectively (except for Figure 26 where the two models had the 
same ΜΑΕ shown with a single line). We notice that MLP scored better accuracy than 
the majority of the respondents and same to the average, whereas Gaussian Process 
scored lower than the average.  In Figure 25 we can clearly see that both models scored 
higher F1 than the average of the respondents, and only Respondent 3 performed better 
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than MLP Classifier. In Figures 26 and 27 we observe that both MLP and Gaussian 
Process scored the lowest MAE and MSE of all the respondents with the exception of the 
third respondent who did exceptionally well in all metrics. 

Figure 24: Respondents’ accuracy for literary papyri    Figure 25: Respondents’ F1 score for literary papyri 

Figure 26: Respondents’ MAE for literary papyri     Figure 27: Respondents’ MSE for literary papyri 

 

Similarly, Figures 28-31 illustrate the accuracy, F1, MAE and MSE of the respondents for 
the documents in comparison with those of our models. In this case, we can see that the 
accuracy and the F1 scores of our models are below the average of all the respondents, 
while both classifiers scored the highest MAE and MSE of all the respondents. However, 
we notice that our models did not perform extremely badly, as they exceeded the 
accuracy and F1 scores of respondents 1 and 5 (MLP exceeded the accuracy of only the 
fifth respondent and scored the same as the first one), while the MAE and the MSE of the 
Gaussian Process Classifier are not much higher than the corresponding of the two 
specific respondents. Finally, we should take into account that in both parts of the 
questionnaire (the literary and the documentary), there was a small number of 
estimates made by the respondents based on their prior knowledge of the papyrus 
under question or a hint on the date in the papyrus text (3 estimates for the literary 
samples and 5 for the documents).  
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Figure 28: Respondents’ accuracy for documents            Figure 29: Respondents’ F1 score for documents 

Figure 30: Respondents’ MAE for documents                    Figure 31: Respondents’ MSE for documents 
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9. Limitations 

The results from the experiments we conducted are quite satisfactory (best accuracy 
score: 69.93, lowest MAE: 0.48) given the limitations and challenges that the task of 
dating Greek papyri by applying machine learning methods involves. 

First of all, the lack of data, i.e. objectively dated papyri that could be used for model 
training is an important and great challenge that we faced. The decisive role of adding 
more papyrus samples was clearly reflected in the learning curves (Figures 14, 15), a 
large part of which indicate high variance that can be addressed with the addition of 
data. 

Apart from the need for more manuscripts, a notable limitation is the imbalance of the 
existing data. As can be seen in Chapter 3 (Table 2 and Table 3), in which we analyzed 
our data, the distribution of papyri per century is very heterogeneous, to the point that 
some centuries have few to almost no samples, while others have a significant 
representation (1 sample of literary papyrus for the 1st century BC and 2 for the 7th AD 
while the 2nd has 87 and 29 samples of documents for the 8th century AD when the 3rd   
BC has over 800). This imbalance naturally affects the results and leads to a poor 
performance of the models when they are called to date manuscripts of the centuries 
that have minimal representation from samples. 

Another issue that should not be overlooked is the fact that the dates given to the papyri 
by objective criteria (see the Introduction) is often not entirely precise or accurate, but 
results from an estimate with an error probability of about 50 years. This means that 
many manuscripts attributed to a century may, if we take into account the difference of 
50 years, be written in the previous or the following century. If such discrepancies have 
been passed on to the training data and consequently to our models, then we may have a 
bias problem. In other words, as our models depend on their training data which they 
consider to be correct and reliable, if the latter contain errors then the models will be 
trained incorrectly and will fail to give correct estimates. 

Finally, a limitation concerns in general Machine Learning and whether it can assist 
people in their work. The concern has to do with the question of whether any mistake 
made by a machine learning model is transmitted to man, that is, whether man, in our 
case the palaeographer-papyrologist, can be influenced by the results of machine 
learning and based on them be led to an error, which might have been avoided if a 
model had not been consulted. 
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Conclusion  

In this thesis, we employed machine learning methods with the aim to assist 
papyrologists in their challenging task of dating papyri. By using data from two online 
collections of objectively dated papyri, we proposed two machine- actionable datasets 
that can be used for this task. Our experiments show that the training of machine 
learning algorithms on the above datasets for their classification into classes of 
centuries gives good, but not very satisfactory results. On the contrary, the application of 
deep learning and transfer learning methods had a promising impact. More specifically, 
the fine-tuned (on a part of our data) ResNet50 model performed quite well but 
comparably to our first experiments, whereas the use of the pre-trained model VGG-16 
with frozen layers and then the training of classifiers gave the highest accuracy and the 
lowest MAE. Our study shows that our best classifier for documents is the MLP Classifier 
with 56.76% accuracy and a MAE of 1.32, while for literary papyri the Gaussian Process 
Classifier with 69.93% accuracy and a MAE of 0.48. Finally, we conducted a research by 
distributing to experts in the field of papyrology a questionnaire consisting of papyrus 
samples that had to be chronologically sorted in centuries and by giving our models the 
same samples for dating, in order to compare the estimates of the experts with those of 
our models. The results show that in the case of literary papyri our models have a lower 
MAE than the average expert, and that in the case of documents their performance does 
not significantly differ from that of some experts. 

Our study gives prospects for future endeavours. A particularly interesting proposal 
would be the study of the results that the chronological attribution of the papyri by 
experts after the consultation of our models would give. Furthermore, the enrichment of 
our datasets is considered helpful and necessary for the improvement of our models’ 
performance, especially in papyri dated to centuries that have low representation in 
samples. 
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