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Abstract 
Explainability mechanisms have opened exciting new doors in the machine learning community. Their 
purpose is to interpret the choices made by models during the prediction process, and explain these 
interpretations in a human-understandable manner. Such explanations allow users to understand the 
inner workings of complex models, something which can either increase trust or reveal a flawed logic. 
Models that process human language are faced with a challenging assignment, and pairing them with 
an explainability mechanism may therefore be of relevance. Toxicity detection is a task within the 
field of natural language processing that is becoming increasingly important with the rise of social 
media and user generated-content. The task involves detecting and classifying different forms of 
offensive language so that if needed, it can be removed. Numerous studies have examined text toxicity 
classifiers, and they have primarily done so by establishing their predictive performance in various 
tasks. The predictive performance of a classifier will indicate the extent to which it has assigned the 
correct class labels, but it will not reveal if it did so by interpreting the text correctly. In this context, 
explainability mechanisms can be used to expose any potential issues. The research problem addressed 
in this thesis is the lack of scientific projects which incorporate explainability in the evaluation process 
of text toxicity classifiers. The aim is to examine if predictive performance is a solid indicator of a 
model's suitability in toxicity detection. To do so, the following questions are answered: What is the 
relationship between the predictive performance of text toxicity classifiers and the quality of the 
explanations they produce?, with the sub-questions Do text toxicity classifiers with a higher predictive 
performance produce explanations of higher quality compared to those with lower predictive 
performance?, Which out of the examined text toxicity classifiers produces the highest quality 
explanations?, and What are the properties of explanations provided by text toxicity classifiers?. 

The chosen research strategy is an experiment, the data collection method is observation, and the 
quantitative data analysis is done through statistical tests. Five text toxicity classifiers were evaluated, 
namely Naive Bayes, Logistic Regression, Random Forests, Long Short Term Memory, and 
Bidirectional Encoder Representations from Transformers. Each of them was paired with the 
mechanism Local Interpretable Model-Agnostic Explanations, and the explanations they produced 
were evaluated by comparing them against a dataset for which ground truth toxic spans are given. The 
findings indicated that the classifiers, despite having considerable variations in their predictive 
performance, bore some overall similarities when it came to their abilities to distinguish toxic words 
from non-toxic ones. However, the examination of how they distribute token weights showed that 
models with higher predictive performance are more reliable when it comes to assessing the toxicity 
level of individual words. Out of all models, Bidirectional Encoder Representations from 
Transformers is concluded as the one that produces the highest quality explanations.  
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Synopsis 
Background 
Explainability can be utilized to increase the trust in a machine learning model, but also to reveal 
issues. A model may have achieved high predictive performance with a wrongful logic, which makes 
it important to also inspect its inner workings. One field where explainability can bring value is 
Natural Language Processing. Toxicity detection is a task within this area that aims to identify toxic 
language online, and classification models are used for this purpose. In this context, explainability 
would help determine if the model has recognized toxic words when making predictions.   
 
Problem 
Studies that have examined toxic text classifiers mainly do so by establishing their predictive 
performance. This may be problematic since it does not establish whether their logic is sound. The 
research problem addressed in this thesis is the lack of studies that incorporate explainability in the 
evaluation of text toxicity classifiers.  
 
Research Question 
This study aims to establish if predictive performance is a solid indicator of a model's suitability in 
toxicity detection. To do so, the following questions are answered: What is the relationship between 
the predictive performance of text toxicity classifiers and the quality of the explanations they 
produce?, with the sub-questions Do text toxicity classifiers with a higher predictive performance 
produce explanations of higher quality compared to those with lower predictive performance?, Which 
out of the examined text toxicity classifiers produces the highest quality explanations?, and What are 
the properties of explanations provided by text toxicity classifiers? 
 
Method 
The chosen research strategy is an experiment, the data collection method is observation, and 
quantitative data analysis was performed using Spearman’s correlation coefficient. Five classifiers 
were used, namely Naive Bayes, Logistic Regression, Random Forests, LSTM, and BERT, and their 
predictive performance was established through AUPRC, Precision-, Recall- and F1-scores in a text 
classification task. The explanations were generated for each of these using the explainability 
mechanism LIME, and the evaluation consisted of comparing them against ground truth toxic spans.  
 
Results 
Naïve Bayes obtained the lowest predictive performance in the text classification task, while BERT 
achieved the highest. As for the explanation scores, the LSTM achieved a high recall but low precision 
when detecting words, while Naïve Bayes did the exact opposite. The ability of the classifiers to 
assign appropriate weights to individual, toxic words was also evaluated. The results show that BERT 
was the strongest model, while Naïve Bayes was the weakest. The Spearman correlation coefficient 
also confirmed that classifiers with higher predictive performance tend to produce higher quality 
explanations than those with lower predictive performance.  
 
Discussion 
A limitation of the study is that a restricted number of text toxicity classifiers were evaluated. This was 
due to time constraints, and future work could therefore include exploration of a wider range of 
models. The main contribution of the thesis is that a greater understanding of the inner workings of 
text toxicity classifiers has been acquired, and that the association between their predictive 
performance and the explanation quality has been investigated.  
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1 Introduction 

1.1. Research Background 
 
Understanding the logic behind predictions made by machine learning (ML) algorithms is crucial. 
Revealing a sound rationale gives credibility to the results, which in turn allows for well-founded 
decisions. When the logic is flawed, on the other hand, it permits corrective actions to be taken. This is 
the key purpose of explainable ML. In this context, an explanation can be described as a group of 
features that have led to a certain decision for a given instance (Montavon et al., 2018). A decision 
could, for example, be the assignment of a particular class label. Another characteristic of 
explainability is that the presentation of the model’s inner workings should be self-supporting and 
understandable in human terms (Guidotti et al., 2018).  

Many forms of explainability mechanisms have been developed, and they are used in various ML 
subfields. Natural Language Processing (NLP) is one such area, and the complexity and nuances in 
human language make explainability a key aspect of any NLP system (Lui et al., 2019). An example 
of the value it brings can be found in toxic language detection. The field has emerged due to the 
enhanced possibility for any individual to freely express their opinions, benign or otherwise, with a 
wide reach through online platforms. The downside of this freedom is evidently that toxicity in the 
form of harassment, provocations, or general disrespect has been given a free-for all-arena. The 
phenomenon has subsequently placed increased pressure on social media sites to address the problem, 
one way being to implement automatized detection and removal of malicious comments (Waseem et 
al., 2017). The purpose of explainability in this context is to identify which particular words led the 
classifier to predict toxicity (Risch et al., 2020), which reveals if the decision was just or not.   

Undoubtedly, this task comes with challenges. To evaluate if a comment is correctly classified, a 
uniform understanding of what a toxic comment is must be established. Terms and definitions vary in 
the field, and toxic language classification is difficult to distinguish from related tasks such as hate 
speech-, abusive language- and cyberbullying detection (Aken et al., 2018). This may be seen as a 
challenge in creating a unanimous understanding. The definition of toxicity used to perform text 
classification in this thesis is the one proposed by Borkan et al., (2019, p. 491), which states that it 
refers to “anything that is rude, disrespectful or unreasonable that would make someone want to leave 
a conversation”. What makes a comment toxic may come down to one word, or a span of multiple 
words which together create a toxic expression. In this thesis, a toxic span is defined as the part of the 
text responsible for the toxicity of a post (Pavlopoulos et al., 2021).  

The choice of explainability mechanism should be done with the particular ML task in mind. Toxic 
language detection is an NLP task, and a study by Jeyakumar et al. (2020) determined that Local 
Interpretable Model-Agnostic Explanations (LIME) is the prominent mechanism for text analysis. 
Therefore, it is the mechanism utilized in this study. It was introduced by Ribeiro et al., (2016), and 
the authors describe its purpose as helping the user gain trust or to detect issues in the model being 
used. In this thesis, the model for which the behavior is being explained by LIME is referred to as the 
base model. Local in the acronym represents the fact that the given explanation should have a local 
fidelity, which means that it should correspond to how the base model would handle the original 
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instance being predicted. Local explanations are distinct from global ones where the goal is to explain 
the model prediction process as a whole, as opposed to for a specific prediction. Interpretable implies 
that the explanation must supply the user with a clear understanding of the relationship between the 
input and output variables (Garreau and Luxburg, 2020). NLP models often adopt techniques such as 
TF-IDF and word embeddings (Ribeiro et al., 2016), and in order to ensure interpretable explanations, 
this complexity must be hidden from the user. Therefore, the final explanation should only consist of 
the actual words which influenced the prediction. Model-Agnostic simply means that the algorithm 
should treat the model as a black box, and thereby be able to explain the predictions of any classifier 
or regressor (Garreau and Luxburg, 2020). This goes in contrast to model-specific explainability 
mechanisms which can only work with a certain type of model.  

When classifying text, an explanation provided by LIME is essentially a list of the words in that text 
and their weights. The weights represent how much and in which way each word influenced the 
prediction probability. For instance, an explanation in toxicity detection may contain the word 
“stupid” assigned with a positive weight, which would indicate that the word had increased the 
prediction probability of the entire sample belonging to the toxic class. This is illustrated in Figure 1:  

 

Figure 1  A toxic comment and the associated explanation provided by LIME 

In Figure 1, all the positive weights, such as those of the words “stupid” and “terrorist” indicate that 
the words have contributed to the sample being assigned the positive class label, meaning the toxic 
class. Words with negative weights, such as that of  “people” do the opposite, and their presence has 
increased the probability of the text contributing to the non-toxic class label. 

LIME can, when used in parallel with evaluation metrics, be adopted as a complement to determine 
the best model for a certain context (Ribeiro et al., 2016). In a situation where one has to choose 
between two or several classifiers, it may not be sufficient to simply compare their predictive 
performance scores. Such metrics will give an indication of how well a classifier did in predicting the 
class labels of the samples. However, there is no transparency when it comes to knowing if it did so by 
interpreting the words correctly.  

One perk of explainability in this context is the previously discussed possibility of detecting a 
wrongful logic which may still lead to high scores. An example of this is presented in the original 
LIME paper, where the authors use the mechanism to explain the predictions of a model classifying 
images as showing either a husky or a wolf. An accuracy of approximately 80% was reported, 
however, when inspecting the explanations an issue was revealed. The model was not using the parts 
of the images representing the animals, but instead, it was focusing on the background. Any image 
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containing snow was classified as a wolf, while all others were predicted as containing a husky. In 
toxicity detection, this could translate to using irrelevant parts of the post when making the prediction, 
or misinterpreting the meaning of individual words or spans.  

The example brings to light the fact that classification scores are not always a sufficient means for 
assessing a classifier. Subsequently, this implies the necessity of observing the explanations of text 
classifiers and comparing their quality. In this context, the quality of an explanation refers to the extent 
to which the explainability mechanisms manage to accurately assess the text within a toxic post. In the 
case of LIME, this would involve the mechanisms recognizing toxic words as such by assigning them 
with weights that emphasize their toxicity.  

 

1.2. Research Problem  
 
Multiple studies have undertaken the task of evaluating text toxicity classifiers (D’Sa et al., 2020; 
Kajla et al., 2020; Leite et al., 2020; Saif et al., 2018;) and they have primarily done so by using the 
predictive performance of the classifier as a benchmark for evaluation. This is a recognized approach 
in the ML field, however, it does not allow to determine if the classifier reached the scores by 
interpreting the textual content in the instances the right way. Its logic may be flawed, but it can still 
end up with good predictive performance scores, as previously shown in the example with the 
classification of huskies and wolves. In toxicity detection, this may translate to the model attributing 
high importance to words that are not toxic, while missing or assigning low importance to those which 
in fact are, such as “idiot” or “dumbass”.  

Not knowing how the classifier reached a certain decision may be dubious in any machine learning 
subfield, but possibly even more so in a semantically complex area such as one dealing with text 
toxicity. The subtleties and nuances of human languages make it difficult to objectively assess if the 
textual explanation provided by some mechanism is reasonable or not. There are many ways of being 
implicitly rude or insulting, and the usage of explicitly profane words is not a precondition for toxicity. 
There are also algorithmic challenges that are general for the NLP field which may be even more 
prominent in this subfield, such as certain slang or misspellings not being in the vocabulary, multi-
word phrases, and wrongful use of words (van Aken et al., 2018). Moreover, research has shown that 
the context in which a toxic post is found can both enhance or decrease the perceived toxicity 
(Pavlopoulos et al., 2020).  

These are all complicating factors indicating that the task of assessing text toxicity classifiers must be 
performed with particular attention and that using only the predictive performance as a benchmark 
may not be enough. However, the tendency in the scientific community does not reflect this, and the 
assumption seems to be that predictive performance is a sufficient measure. Therefore, the research 
problem is defined as the lack of studies that go beyond using predictive performance to assess text 
toxicity classifiers by incorporating explainability in the evaluation.  
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1.3. Research Question 

By addressing the research problem, the intention is to contribute valuable information to the field of 
NLP and toxic language detection. With this ambition in mind, the research question of the thesis is 
defined as follows:  

What is the relationship between the predictive performance of text toxicity classifiers and the quality 
of the explanations they produce? 
 
With the sub-questions: 

1. Do text toxicity classifiers with a higher predictive performance produce explanations of 
higher quality compared to those with lower predictive performance? 

2. Which out of the examined text toxicity classifiers produces the highest quality explanations? 
3. What are the properties of explanations provided by text toxicity classifiers? 

 

1.4. Research Objectives 

The intent of this study is to systematically use explanations provided by LIME to assess the 
performance of different text classifiers. This allows a transparent understanding of the predictions 
since it brings light to which words and spans within the comment led to the determination of the class 
label. It also helps provide an understanding of the relationship between the performance of the 
classifier and the extent to which the explanations are sensible. The text toxicity classifiers evaluated 
in this study are Naïve Bayes (NB), Logistic Regression (LR), Random Forests (RF), Long Short-
Term Memory (LSTM), and Bidirectional Encoder from Transformers (BERT).  

Examining the explanations provided by LIME for the individual classifiers allows establishing the 
extent to which they are in fact detecting toxicity. Explanations were generated using a dataset where 
spans of toxic text within online posts had been determined by human annotators. This allowed using 
the parts of the posts marked as toxic by the annotators as ground truth values, which in turn enables 
assessing the sensibility of the explanations provided by the classifiers.  
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2 Extended Background 
 

This chapter aims to provide the context and information needed to grasp the research presented in this 
thesis. Firstly, the key NLP tasks conducted in this project are described. Secondly, the text toxicity 
classifiers used in the study are presented with regard to their structure and documented performance 
in previous studies. Finally, explainability in the NLP domain and additional related work is discussed. 

2.1. NLP Tasks  

Natural Language Processing is a field in which various computational techniques are utilized in order 
to perform automatic analysis of human language (Young et al., 2018). The NLP tasks essential for the 
comprehension of this thesis will be discussed in the following subsections. 

 

2.1.1 Text Representation  

Machines are not able to read human languages in their natural form, and vector representations are 
therefore required to enable operating on them. Essentially, this means that the words and their 
significance must be transformed into numbers. There are many approaches for achieving this, Term 
Frequency–Inverse Document Frequency (TF-IDF) being one of them. The technique involves 
converting text documents in a dataset to a matrix representation, and the idea is to use the frequencies 
of all words in a collection of documents to measure the importance of each (Ramos, 2003). This 
importance is measured through a TF-IDF score, which is established by multiplying the term 
frequency by the inverse document frequency. The TF is equal to the number of times word X occurs 
in a text, and the IDF is equal to the total number of documents divided by the number of documents 
that contain the word X.  

Word embeddings is another approach used to represent human language in a machine-readable 
format. While TF-IDF tries to capture the importance of a word through its frequency, word 
embeddings will focus on its meaning and relationships to other words. A vector representation is 
created for each word by training a model on a large corpus, and similar vectors may indicate that the 
associated words have a related meaning (Lai et al., 2016). This could allow detecting that words such 
as “jerk” and “idiot” refer to something highly related. There are many different forms of word 
embeddings, as well as ways of creating them. One can choose to create one’s own by learning them 
from a corpus by passing it in a tokenized form to an algorithm such as Word2Vec (Mikolov et al., 
2013). Another option is to use pre-trained ones, where the embeddings have already been learned in a 
separate task. The idea is then that the captured information will still be applicable for solving other, 
similar tasks.  

 

2.1.2 Text Classification 

Text classification (TC) is a central task in the NLP field. It involves assigning a class label to a 
textual document based on the words, and main activities include extracting features, reducing 
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dimensionality, selecting classifiers, and evaluating the results (Kowsari et al., 2019). In this context, 
each word carries an indication of the meaning of the text, and aggregations are created to make a 
judgment concerning the overall character of the text as a whole. TC is performed using text 
classification algorithms. In supervised learning tasks, the algorithm builds a classification model by 
training on a set of labeled training samples, which allows capturing information regarding how the 
words in the document relate to the class labels. TC is widely used in areas such as document 
organization, opinion mining, email classification, and spam detection (Aggarwal and Zhai, 2012), and 
of course, toxic language detection. 

 

2.1.3 Toxic Language Classification 

Toxic language classification is an NLP task that involves building models to recognize textual 
content which in some way would make the reader want to leave the conversation. The models can 
then be used in automatic methods for detecting and removing abusive posts. A key benefit of toxic 
language detection is that comments and posts of a toxic nature can be removed, which contributes to 
a more friendly online environment.  

The number of people who actively participate in the online community by sharing their thoughts and 
ideas is on a steady rise, and with that, the amount of abusive content. Mohan et al., (2017) 
investigated the relationship between toxicity and health in the online forum Reddit, with the results 
showing that toxicity always leads to a decline in forum health. Research also shows that adolescents 
are particularly vulnerable to this type of content, and that the effects can create mental health 
problems, and in the worst case even lead to suicide (Wijesiriwardene et al., 2020). Such serious 
indications evidently underline the importance of continued exploration.  

The general approach in toxicity detection is to create a classification model by training it on a dataset 
containing examples labeled based on their toxicity. These labels may be binary, indicating that the 
instance is either toxic or non-toxic. They may also contain multiple classes, and reflect the severity or 
the type of toxicity in the post. Table 1 shows a number of samples from a dataset with binary class 
labels, where 0 represents non-toxic and 1 represents toxic: 
text toxic 

Not sure where you got your definition of a good guy. You need to get a new dictionary. He was on  
the run from the law and has a very jaded past. 

0 

How did he pressure Kaneshiro? 0 

I will bare my breasts after a brief statement. WTF? Starved for attention? 1 

You are quite possibly the most offensively ignorant person to regularly haunt the Comments Section. What a 
piece of work. You have no bottom, it just goes farther and farther down... 

1 

Table 1  Toxic samples and non-toxic text samples with binary class labels 

Table 1 shows how the human annotators have assessed the comments as either being toxic or non-
toxic. However, detecting toxicity is not a straightforward task, and one of the difficulties lies in the 
fact that text toxicity is not a clearly defined phenomenon that can be established through some 
universal metrics. Tolerance levels and perceptions will vary between individuals. Another 
complicating factor is that the type of online conversations in which this form of language is found 
often contains complicating factors such as slang, spelling mistakes, and improvised shortenings of 
words (Gunasekara and Nejadgholi, 2018). Thankfully, non-toxic language is far more common than 
toxic language. This simultaneously means that the classifiers are acting on highly imbalanced data, 
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and with the toxic minority class being the positive one it can be considered a form of rare event 
prediction. Fewer examples of any class make it harder to predict, which generally leads to a 
classification bias towards the majority class (Fernandez et al., 2018).  

 

2.2 Text Classification Algorithms 

Various algorithms can be used when performing text classification, and the choice of which to use 
will depend on the task. Nonetheless, a general requirement is that the model should be able to 
effectively handle a large number of features with varying frequencies (Aggarwal and Zhai, 2012), as 
is the case with textual data. In this study, five text classification algorithms were evaluated, namely 
Naive Bayes, Logistic Regression, Random Forests, LSTM, and BERT. LSTM and BERT belong to 
the field of deep learning and will therefore be referred to as the deep machine learning classifiers. 
NB, LR, and RF will be referred to as the non-deep machine learning classifiers. The following 
subsections will provide an overview of the selected classifiers, including insights into their 
achievements in terms of predictive performance in previous research studies. Incorporating the latter 
in this study is of interest since the aim of this study is to understand the relationship between 
predictive performance and explanation quality. 

 

2.2.1 Non-Deep Machine Learning Classifiers 

Naive Bayes is seen as well-suited for NLP problems and is simple yet powerful in terms of accuracy 
at a low computational cost (Thangaraj and Sivakami, 2018). It has been used for document 
categorization since the 1950s and is to this day subject to research and development for the text 
classification task (Qu et al., 2018). Some of its main advantages are its suitability for text data, that it 
is easy to implement and fast to run, while a downside is its sensitivity to data scarcity (Kowsari et al., 
2019). NB is proven to struggle in classification tasks on imbalanced datasets, a phenomenon which 
comes from the underrepresentation of one of the classes during the training process (Liu et al., 2009). 
This results in the classifier not having enough data points to draw from when learning to recognize 
the minority class. The mentioned phenomenon could make the algorithm a peculiar choice in the 
context of toxic language detection, seeing as imbalance data is the standard in toxicity detection. The 
inclusion of NB is made since this project does not aim to distinguish which classifier obtains the best 
predictive performance. Instead, the goal is to determine which classifier provides the most sensible 
explanations, and one cannot assume that there is a direct correlation between the performance and the 
explanations.   

Logistic Regression is another suitable classifier for NLP tasks. Pranckevičius and Marcinkevičius 
(2017) have shown that it can outperform both NB and RF in a short-text sentiment classification task 
on online reviews. The study also demonstrated that all of the models manifested an insignificant 
increase in predictive performance when increasing the training set size from 5,000 samples per class 
to 75,000. An experiment by Kajala et al., (2020) used the same classifiers in a multi-class toxicity 
task, and LR once again came out as number one when evaluated using hamming loss, log loss, and 
accuracy. This indicates that it performs well in text toxicity tasks, and it is also straightforward to 
implement and requires little or no tuning. However, there are drawbacks. LR, much like NB, treats 
each data point as independent. Therefore, the classifier mainly predicts outcomes based on each word 
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as an independent feature (Kowsari et al., 2019). Intuitively, one can understand that this poses 
problems when it comes to text analysis. In most forms of exchanges and conversations, a word is not 
perceived as a stand-alone entity, but will rather get its complete meaning from other words in the 
conversation. LR and NB do not always take this into account, and examining the explanations may be 
an interesting way to determine how and if this issue presents itself.  

Random Forests is often used in text classification due to its strengths in handling high dimensional 
and noisy data, and it has proven to yield good results (Islam et al., 2019). With that said, it is of 
importance to distinguish the classification of longer text documents from that of short-text, as is often 
the case with online comments. RF often struggles with short-text due to the sparseness of words and 
the often informal and varied use of words (Bouaziz, 2014), and its inferior performance in such 
situations has been documented (Pranckevičius and Marcinkevičius, 2017). Other factors which are 
essential to keep in mind are that, despite its fast training, it is slow in making predictions and it has a 
tendency to overfit (Kowsari et al., 2019). Despite these challenges, it is still a robust and widely used 
algorithm. A comparative study made by Hartmann et al., (2019) evaluated the performance of RF, 
NB, artificial neural networks, and K-nearest neighbor in representing human intuition in a text 
classification task using data from social media. The authors state that RF is underrepresented in text 
classification research, but that their results actually show that it performs well. It obtained the best 
results (alongside NB) for all datasets, and it is especially strong in three-class sentiment tasks.  

A general observation is that, based on previous studies, Logistic Regression seems to be the strongest 
of the non-deep models when it comes to toxicity detection. The chosen algorithms are evidently not 
all that exists. Examples of other common and popular algorithms for text classification tasks are 
Support Vector Machines, Decision Trees, K-nearest neighbor, and Boosting and Bagging techniques 
(Kowsari et al., 2019), and the exclusion of them and others are merely due to the limited time-frame 
of this research project.  

 

2.2.2 Deep Machine Learning Classifiers  

Deep learning models generally achieve higher predictive performance than the ones discussed in the 
previous subsection, but a general issue is that this comes at the cost of lower interpretability (Kowsari 
et al., 2019). The models are exceedingly complex, and this black-box characteristic makes it difficult 
to grasp the logic behind the outcomes. This can, undoubtedly, have an effect on the user’s level of 
trust. 

With the aspect of the size of the dataset in mind, Ezen-Can (2020) conducted a comparative 
evaluation of an LSTM and a BERT model to determine their suitability for smaller datasets. The 
training set size used in the study consisted of 15,000 samples, and the results clearly showed that the 
LSTM is the better choice for a smaller corpus. This is especially interesting seeing as it is a lower 
computational cost than BERT. A study by Nowak et al., (2017) has also shown that the LSTM is 
especially suitable for short-text sentiment classification, such as online comments, and that 
bidirectional LSTM’s perform better than the one-directional ones for all datasets used in the 
evaluation. Previous research also shows that both one-directional and bidirectional LSTM’s are 
superior to Logistic regression when used for toxic language classification (Salif et al., 2018).  

BERT, the second deep learning classifier used in this study, and there are a number of pre-trained 
models to accommodate various NLP problems. By the time of its publication, the authors could prove 
state-of-the-art results in a wide range of tasks (Devlin et al., 2018), and the success has continued. 
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The field of Toxic Language Detection is no exception. Research has shown that BERT is able to 
outperform a Bidirectional LSTM and a convolutional neural network when it comes to correctly 
classifying samples as toxic (d’Sa et al., 2020) as well as achieving top scores in a classification 
competition for classifying aggression in the short text (Gordeev and Lykova, 2020).  

 

2.3 Explainable NLP 

The NLP field has made substantial advances in recent years. Despite this, only a minority of the 
research studies conducted in the area have been dedicated to understanding the explainability aspect 
of NLP systems (Liu et al., 2018). This may be seen as problematic as the increased complexity of the 
models used in the field makes them more of a black box than ever. Adding explainability to a model 
can help build trust in the results, or alternatively, reveal issues. This makes it an important 
contribution to the entire ML field, for what good are the results if we cannot know whether or not we 
can trust them? Such uncertainty may lead to skepticism and a reluctance to put the models to use in a 
real decision process. On the other hand, a solid explanation can do just the opposite. 

In a survey on the state of explainability in the NLP domain made by Danilevsky et al., (2020), the 
authors state that the standard way to categorize explainability is primarily based on two separate 
aspects. The first concerns whether the explanations refer to individual predictions of a model, or if it 
describes the model’s predictive process as a whole. The former are known as local explanations, 
while the latter are known as global. The second aspect concerns if the explanation is generated 
naturally by the model, or if some post-processing is needed. This means that in addition to being 
global or local, and an explainability technique can also be either self-explanatory or post-hoc. 

In this particular study, the area of interest is local explainability. On this level, explainability in text 
classification involves letting the user know how various words in a given text led to a particular 
prediction output. The words become the explanation, and they can often provide sufficient 
information to enable an interpretation of the model’s behavior (Mathews, 2019). For instance, if an 
explanation for a post classified as non-toxic shows that the word “asshole” contributes to the non-
toxic label, then this would indicate an issue in the model’s ability to recognize the toxic language. 
Examples of self-explanatory local prediction methods are attention mechanisms and first-derivative 
saliency (Danilevsky et al., 2020). Both will assess the importance of individual words or 
combinations of them, and this information can then be used directly to establish which words carried 
the highest importance in establishing the class label. In that sense, these methods are explainable by 
design.  

The other version of local explainability mechanisms is post-hoc, which entails adding some form of 
post-processing beyond the regular workings of the classifier. An example is a recently presented 
technique called Confident Itemset Explanation (CIE). Introduced by Moradi and Samwald (2021), it 
is the first approach to use confident item sets to represent the decision boundaries of black-box 
classifiers, both on the instance- and the class level. The itemsets are used to measure the strengths of 
the local relationships between the words, or a set of them, to the predicted label. The authors are able 
to show promising results, however, the mechanism is still in its infancy.  
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2.4 LIME 

In a survey conducted by Jeyakumar et al. (2020), 455 participants were asked to specify which 
explainability mechanism they preferred for certain tasks, such as image, audio, and text. Six of the 
most popular explanation methods were put to the test, namely LIME, Grad-CAM++, Anchors, SHAP, 
saliency maps, and explanation by example. The results showed that 70% of all respondents thought 
that LIME was the best mechanism when it came to text, making it the preferred option in the area. 
These results indicate that it is a robust and appreciated mechanism, making it a suitable choice to 
explore further in this study.  

 

2.4.1 Method 

LIME is local and post-hoc. It was created by Ribeiro et al., (2016), and the explainability mechanism 
uses local, interpretable surrogate models to interpret predictions of a base classifier, such as text 
toxicity classifiers. The interpretable surrogate is used to approximate the inner workings of the more 
complex base model, which in turn allows explaining its behavior. When applied in TC, LIME 
attempts to interpret the base model by perturbing the input text sequence and then observing which 
effects this has on the prediction probabilities for a given instance. In this study, the instances are the 
toxic posts. The effects are established by calculating a similarity score between the original prediction 
probabilities and those produced when perturbing. The perturbed data points representing the words 
are removed one by one, and weights are then assigned based on how much the absence of each word 
affects the original output. The weight of a given word in a post should roughly correspond to the 
changes in the prediction probability which its removal evoked. For instance, if removing the word 
“moron” from a text resulted in the prediction probability of the toxic class decreasing from 75% to 
65%, then its token weight should be set to roughly 0.10.  

LIME’s methodology differs from model-specific approaches since it does not require any 
understanding of the inner workings of the model. It allows establishing which words contribute to the 
final prediction output, and in which way. In binary toxicity classification, this involves establishing 
which words strengthen the probability of the text belonging to the toxic or the non-toxic class. Figure 
2 shows a LIME explanation and how the different words in the post have influenced the prediction 
output: 
 

 

Figure 2  Explanation provided by LIME in a binary classification task 
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The true class of the instance explained in Figure 2 is toxic, and it is indicated that the words “human” 
and “garbage” (marked in orange) have contributed to the prediction of the toxic class. This seems 
reasonable, making it the type of explanation that could reinforce the user’s trust in the classification 
model.  

 

2.4.2 Fidelity-Interpretability Trade-Off 

According to Ribeiro et al., (2016), the explanation model created by LIME should be a reliable 
approximation of how the base model (the model which behavior we want to understand) predicts 
individual instances. For example, if the base model would deem a certain word in the post as highly 
toxic, then this assessment should be communicated by the explanation model as well. The authors 
describe this as the explanation model having local fidelity. Another key characteristic is the 
interpretability of the explanation. An explanation is interpretable if it provides the user with a 
qualitative understanding of the relationship between the sample as a whole and the prediction. Often, 
this involves limiting the number of features used in the explanation model. In the case of this study, 
these features are the words in the sentence. It may be cognitively challenging to interpret an 
explanation with a large number of words, and it can therefore be preferable to use only a selection of 
them when constructing the explanation. In practice, this could involve using only 6 out of 100 words 
in a text to create the explanation. The local explanation model with interpretability constraint is 
defined as follows: 

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑎𝑟𝑔		𝑚𝑖𝑛	
!∈#

𝐿(𝑓, 𝑔, 𝜋$) + 𝛺(𝑔) 

Ribeiro et al., (2016) define an explanation as a model g ∈ G, where G is a group of interpretable 
models. Ω(g) is a measure of the complexity of the explanation, which may be minimized by limiting 
the number of words used in the explanation. L is the loss, measuring how close the explanation is to 
the prediction of the original model. f(x) is the probability that x belongs to a given class according to 
the base model. Πx is a proximity measure that is used to define the size of the neighborhood around x 
included in the explanation. Putting it all together, this gives L(f,g,πx), which is a measure of how 
unfaithful g is when estimating f in the locality of πx. Optimally, there should be both local fidelity and 
interpretability. To assure this, L(f,g,πx), should be minimized and Ω(g) should be low enough for 
humans to understand it. 

2.4 Other Related Work   

This study aims to examine the relationship between the predictive performance of text toxicity 
classifiers and the quality of the explanations they produce when paired with LIME. The explanations 
are generated using the Toxic Spans dataset (TSD), which contains columns displaying toxic spans 
ground truth values. This column allows performing spans detection (SD), meaning that the ground 
truth column can be used to assess the extent to which LIME was able to detect spans of toxic words 
in the text. Comparing the generated explanations against the ground truth values thereby allowed 
assessing the quality of the explanations.  

The TSD is described in further detail in Section 3.2.1. It was created by Pavlopoulos et al., (2021) for 
SemEval, an international workshop in semantic evaluation. The dataset served as the data source in 
an academic coding challenge where the goal was to detect toxic spans, and the contestants were 
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evaluated using an F1 score. The top contender obtained a score of 0.708 using a BERT ensemble 
approach utilizing both short and long spans (Zhu et al., 2021). Karimi et al., (2021) achieved an F1 
score of 0.667 by combining a CharacterBERT with a Bag-of-Words model, while Chhablani et al., 
(2021) obtained an F1 score of 0.689 by using a RoBERTa. The latter also made the observation that 
their BERT-based models had a tendency to predict non-toxic offsets as toxic. In this workshop 
setting, the contestants were limited by the protocol in the sense that the ranking was based only on 
their F1 score. No restrictions existed in this thesis when it came to which and how many measures 
could be used to assess the abilities of the models to detect toxic spans. Therefore, this study can be 
seen a continuation of the work produced in the SemEval challenge.  
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3 Methodology  
 

In this chapter, the research methodology with regards to its design and application is presented. 
Firstly, the chosen research design is described and motivated, followed by a deliberation of an 
alternative approach. Thereafter, the application of the research method is presented. The section 
covering the application also contains all explanations and definitions needed to interpret the findings 
of this study.  

3.1 Research Design  

Research Strategy 
According to Denscombe (2010), the overall purpose of a research strategy is to provide guidance and 
support when performing a scientific project, and that the choice of such should be made with the 
research question in mind. It is also important to consider the feasibility of available methods; all may 
not be possible from a practical perspective, such as resources and competency. The research strategy 
chosen for this study is an experiment. It is well suited for investigating the relationship between and 
properties of some given factors, and is especially suited in contexts where exact measures are 
required (Denscombe, 2010).  

In this study, the relationship to be examined is that between the predictive performance of 
classification models and the quality of the explanation they provide. The properties of the 
explanations themselves are also of interest, and establishing their nature is required to answer the 
final sub-question. One version of performing the experiment could have been to use a single 
classification algorithm. This could have involved manipulating its performance by tuning parameters, 
changing the amount of training data, etc., and then investigate which model gave the best 
explanation. However, the focus in this study is not on comparing the explanations given when using 
one and the same classification algorithm, but rather to compare those given by different ones.   

The characteristics of an experiment are often associated with understanding a causal relationship 
between an independent and dependent variable (Johannesson and Perjons, 2014). In this study, this 
could have involved investigating if an increased predictive performance causes the quality of the 
explanations to increase. Or conversely, if good quality explanations cause higher predictive 
performance. However, causality was not examined explicitly. Instead, the relationship between the 
predictive performance and the explanation quality was observed by measuring the correlation 
between the two variables.  

Data Collection Method 
Another aspect to consider when designing a scientific study is which research methods to use. 
Johannesson and Perjons (2014) describe that while the strategy will provide high-level guidance of 
the project, the methods are hands-on in defining how to collect and analyze the data. Quantitative 
data are collected in this study, and the chosen data collection method is Observation. The name 
comes from the fact that data are created as the researcher observes the phenomenon of interest. 
Within this project, it refers to observing the classification performance of the classifiers and the 
quality of the explanations provided by LIME when paired with each of the classifiers. These are the 
data of interest when discussing the data collection method used in this study. The publicly available 
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datasets used to train and evaluate the algorithms are only a means to produce different scores and 
measures, and it is these values that we want to observe and draw conclusions from.  

Observations can be conducted in different manners, and the approach chosen for this study was 
structured observation. It is suitable when the nature of the data is known and can be predefined 
through variables or measures that describe what the researcher is looking for (Given, 2008). In the 
case of this study, the desired data could be categorized into multiple scores and measures, which 
allowed creating unanimous observation schedules for logging the values. One observation schedule 
was created for documenting the predictive performance scores of the text toxicity classifiers, and 
another one was designed for documenting the scores and measures relating to the explanations 
created by each of the classifiers when paired with LIME. 

Data Analysis Method 
Quantitative data analysis with inferential statistics was adopted. Inferential statistics are commonly 
used to investigate whether there is a difference between two or more populations (Johannesson and 
Perjons, 2014). In this study, the application of statistical evaluation involved examining the 
relationship between the predictive performance of the classifiers and the explanations they produced 
using Spearman's correlations coefficient. It should be noted that this test will not disclose causality, 
but rather the nature and strength of the relationship. A closer description of the coefficient, as well as 
the application of the data analysis method, is given in Section 3.2.7. 

 
 

3.1.1 Alternative Research Design  

Alternative approaches for conducting the research project were contemplated, and the most carefully 
considered option was to conduct design science research. It is an approach that focuses on the 
development and scientific study of artifacts, with a focus on how these solve real, general, and 
relevant problems for users within a given context (Johannesson and Perjons, 2014). In this research 
project, the scientific study of artifacts entails systematically evaluating and comparing text toxicity 
classifiers with a focus on the explanations they provide. It should be kept in mind that design science 
is not a research strategy, nor is it a research method. It is a way of conducting research. This means 
that one cannot choose “experiment over design science” for instance, because there is no 
contradiction between the two. One can conduct a design science study, during which the experiment 
is used as the research strategy. With this in mind, the alternative research design would primarily 
have implied using the same building blocks in terms of research strategy, data collection method, and 
data analysis method as in the chosen research design, but with a design science approach.  

According to Johannesson and Perjons (2014), a design science project must fulfill three overall 
qualifications. Firstly, a research strategy must be used for examining the problem at hand as well as 
for establishing the requirements of any stakeholders affected by it. Suitable methods must also be 
included for developing and/or evaluating the artefact/s of interest. When it comes to establishing the 
requirements, a focus group could have been used to collect data concerning the priorities of the 
stakeholders. For instance, questions such as what the most important aspects of the explanations are 
could have been discussed. Perhaps the stakeholders would find it more important that the 
explanations contain as many of the toxic words as possible, rather than the manner in which the 
weights are attributed to the individual, toxic words.  
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As for the evaluation, it would also have been possible to incorporate a more qualitative assessment of 
the explanations. The stakeholders could then have been asked to assess the explanations as images 
(such as the one previously displayed in Figure 2). This could have been done through a questionnaire 
containing explanation images from the different classifiers alongside questions regarding their 
interpretability and sensibility. However, after careful consideration, a more systematic take on 
eliciting requirements from stakeholders and adding a qualitative assessment was not seen as an 
optimal fit. Such a process is rigorous and time-consuming, and therefore not an evident choice when 
working under restrictions in terms of time and resources. It can also be argued that the strong focus 
on the elicitation of requirements from the perspective of stakeholders was not a main priority. In the 
current study, the superior artifact was to be established purely through metrics, and other functional 
or non-functional requirements were not of primary interest. 

The second qualification of a design science project is that the results of the study must be compared 
and linked back to existing findings and knowledge in the research field. One of the purposes of this is 
to establish the originality and relevance of the findings. Comparing one’s research finding to existing 
knowledge is an established approach, however, the originality or innovativeness of the artifacts 
compared in this study are not at the center. Instead, the focus is purely directed towards their ability 
to produce accurate explanations. The third condition of a design science research study is that the 
findings must be communicated to both the scientific community as well as the industry. This is a goal 
of most research projects, but may not be suitable as a strict requirement for one at the Master’s level. 
With all these factors in mind, the design science approach was not adopted. 

 

3.2 Application of Research Method 
 
The methodology consisted of seven steps, starting with the selection of datasets and finishing with the 
statistical analysis of the results. Certain steps were iterative, such as going back and forth between the 
modeling- and evaluation steps when creating the classification models. Figure 3 shows the outline of 
the methodological procedure in its entirety:   

 
Figure 3  Outline of the steps in the research method 

The subsections below present each of the steps in Figure 3 in closer detail. The preprocessing of the 
data and the experiments were conducted in Python using Google Colab, which is a web-based, 
integrated development environment.  
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3.2.1 Dataset Selection 

Two publicly available datasets were used in this study; one for training and testing the classification 
models, and another for creating and evaluating the explanations. They are both presented and 
described below.  

Civil Comments dataset 
The Civil Comments dataset (CC) was used to train and test the text toxicity classifiers evaluated in 
this study, which allowed establishing their predictive performance in text classification. Created by 
Borkan et al., (2019), the dataset is publicly available through the TensorFlow library and it contains 
approximately 1.9 million samples.1 Each sample consists of a post as well as features describing 
which type of toxicity the post contains, if any. The values of these features are floating-point numbers 
representing the fraction of annotators who found the sample to contain that particular kind of toxicity. 
These columns were all dropped since the type of toxicity is not of relevance in this study.  

Each instance also contains the feature “toxicity”, which represents a more general perception of toxic 
language. This column was used to create a binary class label; any instance which had a toxicity value 
greater than or equal to 0.5, meaning that a majority of the annotators had found it toxic, was assigned 
the value 1. All other instances were assigned with the class label 0, demonstrating that the post is 
non-toxic. The dataset is highly skewed, and approximately 8% of samples were assessed as toxic by 
at least half of the annotators.  

Toxic Spans dataset 
SemEval 2021 Task 5 provided the Toxic Spans dataset which contains 10,629 samples.2 The posts in 
the dataset are derived from the Civil Comments dataset, and they are all toxic. The individuals 
annotating the TSD were not instructed to label the posts as a whole, instead, their task consisted of 
highlighting the actual parts of the post that they found to be contributing to its toxicity. This could be 
a single word, a span of words, or multiple spans of words. In this context, a toxic span is a sequence 
of words within a text responsible for the toxicity of that text. The dataset was chosen for this study 
due to the fact that it contains ground truth values, which allowed evaluating the LIME explanations. 
The dataset was not used to train and test the classifiers since it only contains toxic posts.  

The TSD has eight columns, but only the text- and spans-columns were kept in their original form in 
this study. The text-column contains the toxic post, and the spans-column specifies the character 
offsets highlighted as toxic by the human annotators. A new column was also created using one of the 
original ones. The original column gave the probability of each character within the toxic comment 
being toxic, and represents the percentage of the annotators that marked that specific character as 
toxic. The new column represented the same thing but on the token level, meaning it specified the 
probability that each word was found toxic by the annotators. An excerpt of the three columns in the 
TSD utilized in this study are displayed in Table 2:  

 

 

 

 

 
1 https://www.tensorflow.org/datasets/catalog/civil_comments 

2 https://github.com/ipavlopoulos/toxic_spans/tree/master/data 
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spans	 text token_probabilities	

0  
[29, 30, 31, 32, 33, 34] 

 
”How about we stop protecting idiots and let 
nature add some bleach to the gene pool. We can 
always submit their names for the Darwin awards.” 
  

 
{'How': 0.3333333333333333, 
'about': 0.26666666666666666, 
'we': 0.0, 'stop': 0.0, 'protecting': 
0.0, 'idiots': 0.66666666666666, 
'and': 0.0, 'let': 0.0, 'nature':... 

1  
[35, 36, 37, 38, 39, 40, 41, 42, 
49, 50, 51, 52, 53, 54, 55, 61, 62, 
63, 64, 65, 66, 67, 68, 69, 70, 71, 
72] 
  

 
”Trump said, IN AS MANY WORDS, that Mexicans 
were rapists and drug dealers” 

 
{'Trump': 0.0, 'said': 0.0, '': 0, 'IN': 
0.0, 'AS': 0.0, 'MANY': 0.0, 
'WORDS': 0.0, 'that': 0.0, 
'Mexicans': 1.0, 'were': 0.0, 
'rapists': 1.0, 'and': 0.0… 
 

2  
[ ] 

 
”Trying the education route is best but you face a 
huge problem in that the average person today is 
dumber than a doughnut. Stupid, maybe you can 
do something but dumb, dumb is forever.” 
 

 
{'Trying': 0.0, 'the': 0.0, 
'education': 0.0, 'route': 0.0, 'is': 
0.0, 'best': 0.0, 'but': 0.0, 'you': 
0.0, 'face': 0.0, 'a': 0.0, 'huge': 0.0, 
'problem': 0.0, 'in': … 

3  
[56, 57, 58, 59, 60, 61, 62, 63, 
64, 65,66, 67, 68, 69, 70, 71, 72, 
73, 74, 75,76, 77, 78, 79, 80, 81, 
82, 83, 84, 85,86, 87, 88, 89, 90, 
91, 92, 93, 94, 95,96, 97, 98, 99, 
100… 

 
“People are tired of seeing their countries overrun 
with illegal immigrants, crime, social parasites and 
welfare refugees and I applaud Hungary, Eastern 
Europe to protect their citizens and approve of 
LePen. Duterte is right killing druggies , but should 
be taken to court… 

 
{'People': 0.0, 'are': 0.0, 'tired': 
0.0, 'of': 0.0, 'seeing': 0.0, 'their': 
0.0, 'countries': 0.0, 'overrun': 0.0, 
'with': 0.0, 'illegal': 0.5, 
'immigrants': 0.5, '': 0, 'crime': 0.5, 
'social': 0... 
 

Table 2  Excerpt TSD showing the ground-truth spans, toxic comments and token probabilities 

In Table 2, the toxic words are marked in red for readability. The instance with index 0 is deemed to 
contain only one toxic word, namely “idiots”. The spans column indicates that the first letter of this 
word is found at index 29, and the last at index 34. The token probabilities column indicates that the 
toxicity of that word was corroborated by 66% of the annotators. The instance with index 1 contains 
multiple toxic words, and the token probabilities indicate that the word “rapists” was found toxic by 
100% of the annotators. The text with index 2 is deemed as toxic as a whole, however, the annotators 
have not been able to point to any explicit toxicity in the post. Finally, the sample with index 3 
contains multiple toxic spans.  
 

3.2.2 Dataset Preparation 

Preprocessing 
Research has shown that thorough preprocessing of textual data in toxicity detection adds little or no 
value (Mohammad, 2018), and a moderate focus was therefore dedicated to this task. Unusable 
characters such as backlashes and question marks were removed without space, and stopwords were 
removed using the Natural Language Toolkit library’s stopword function, using the English language 
parameter.  

Text Representations  
TfIdfVectorizer from the Scikit-learn library was used to create the TF-IDF vectors in this study.3 All 
parameters were set to default except for min_df and max_df. Both parameters work as thresholds to 
eliminate words that are either too uncommon and or too common based on their word frequency. 
Min_df establishes a threshold for minimum occurrence marking when not to include a word in the 
vocabulary, and was set to 8. Max_df is the maximum occurrence threshold and was set to the 
floating-point value of 0.9, meaning 90% of the documents. Both parameters were established through 

 
3 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html 
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tuning, and the testing showed that changing the values did not have a considerable impact on the 
predictive performance scores on the TC level.  

Pre-trained word embeddings were used as input to the LSTM classifier, and GloVe vectors were 
chosen. Created by Pennington et al., (2014) the approach aims to create a word-word co-occurrence 
matrix of all nonzero elements in the corpus. The type of pre-trained word vector used was GloVe’s 
Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors).4   

Data Partitioning  
A random subset of 400,000 instances from the CC was used for training and testing the classifiers in 
this study, and it was split into separate sets for training and testing. The training size was determined 
using learning curves, and the data was split using a 70:30 ratio. This meant that 70% of the samples 
were used for training and 30% for testing, resulting in the training set containing 280,000 samples 
and the test set 120,000 samples. Figure 4 shows the class distribution of the train set (left) and the test 
set (right), with 0 representing the non-toxic instances and 1 the toxic ones: 

 

Figure 4  Class distribution in the CC train and test set 

The CC is highly skewed as previously discussed, which resulted in there being 22,293 toxic instances 
and 257,707 non-toxic ones. As for the test set, there were 9,572 toxic instances and 110,428 non-
toxic ones. Undersampling of the non-toxic majority class was tested to assess if this could positively 
affect the predictive performance scores. The approach did not yield an observable improvement and 
was therefore dismissed. 

The TSD is already split into three separate categories; a training set consisting of 7,939 samples, a 
trial set consisting of 690 samples, and a test set containing 2,000 samples. The purpose of using the 
TSD in this study is purely to tune the parameters in LIME and to generate explanations, and 
therefore, only the trial and test set were used. The trial set was used to tune the parameters in LIME, 
while the test set was used to establish the final scores.   

 

3.2.3 Data Modelling 

Five different classification algorithms were used to conduct TC in this study, and their architecture 
and implementation are further described in this section.  

 
 

4 https://nlp.stanford.edu/projects/glove/ 
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Naive Bayes 
Naive Bayes uses the conditional probabilities of the Bayes Theorem. In toxic language detection, this 
entails calculating the probability that the class variable is toxic, given the words used in the particular 
comment being predicted. Each word is considered an independent feature, and those often found in 
comments labeled as toxic will contribute to a higher probability of toxicity, while words that do not 
will lower it. As described by Goodfellow et al., (2016), we can let X represent a vector of size n, 
X1...Xn, which is to be classified into m classes, C1... Cm, then we must find the probability of each 
class given X: 

                          	
𝑃(𝐶%|𝑋) =

𝑃(𝑋|𝐶%)	𝑃(𝐶%)
𝑃(𝑋)

 

              
 
Vector X, which in this study represents the TF-IDF vectors, is then assigned the class with the highest 
probability. The implementation from the Scikit-Learn library was used with default parameters, 
except for a random seed value of 42 for the random_state parameter.5 The input was the TF-IDF 
vectors. 

Logistic Regression 
Logistic Regression is a supervised learning algorithm that splits the feature space linearly to create 
the best possible decision boundary to separate the samples. A logistic function is then used to predict 
the class label, and it has been defined as follows by Wright (1995): 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜂) =
1

1 + 𝑒𝑥𝑝(−𝜂)
 

This function allows assuring that the output of a linear equation to be between 0 and 1. The 
probabilities of an example belonging to a certain class are derived based on its features, which are 
used to determine the class label based on some threshold value. If y is a feature, LR gives the 
probability of a binary output yi = {0,1} given input xi (Kowsari et al., 2019). The Scikit-Learn version 
of the algorithm was used with default parameters, a random seed value of 42 was applied for 
reproducibility, and the TF-IDF vectors were passed as input.  

Random Forests 
Random forests is a supervised ensemble learning algorithm that combines multiple decision trees to 
create a single, predictive model. Each decision tree is trained on a random subset of the features, and 
each will create its own prediction. The best one is selected through a majority voting system, as 
shown in Figure 3: 

 
5 https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html 
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Figure 5  Random Forests prediction process 

The idea behind combining multiple trees is that, even though some of them will produce errors, the 
majority will not. This allows moving away from wrongful predictions. The Random forest algorithm 
from Scikit-Learn was used with default parameters, the value of the random seed was 42 and the TF-
IDF vectors served as input.6   

LSTM 
Created by Hochreiter and Schmidhuber (1997), Long short-term memory is a recurrent neural 
network which deals with the issues of short memory by using feedback gates in the form of neurons. 
The network is built in layers, each of which consists of recurrently connected memory blocks. The 
neurons rely on an activation function to make sure that all values in the network are kept in a range 
between 0 and 1, and these values are then used to determine which information to keep. Values close 
to 1 indicate that the information is important and should be kept, while those closer to 0 indicate that 
they may be forgotten. This architecture is suitable for operating on sequential data, such as text, and a 
cell state is used to carry relevant information throughout the different processing steps. In TC, this 
allows the network to learn which words within a text are important and which are not, and the 
information is used to make predictions. LSTMs can also be bidirectional (BiLSTM), which entails 
training a second LSTM on a reversed version of the input sequence. This gives the network access to 
even more information by providing both historical and future context.  

The LSTM used in this study was built using the Keras library.7 The first layer consisted of the 
embedding layer, and the GloVe word embeddings served as input. The next layer is the first of two 
LSTM layers. A stacked bidirectional architecture was used, meaning that these were two bidirectional 
layers. 100 neurons were applied in each. Two dense layers were used; one with 6 neurons and relu 
activation function, and another with 1 neuron and sigmoid activation function. Binary cross-entropy 
was selected as the loss function and the Adam-optimizer was used to find the weights. The batch size 
was set to 64, and training pursued during four epochs with early stopping. The input sequences were 
truncated to have a maximum length of 300, and pre-padding was used to assure that they were all of 
the same lengths. The choice of pre-padding was made based on testing, and on the documented 
benefit of choosing pre-padding over post-padding for LSTM’s (Dwarampudi and Reddy, 2019). 

BERT 
Bidirectional Encoder Representations from Transformers is a bidirectional, transformer-based NLP 
model. The transformer is an architecture that uses attention-mechanisms in the task of transforming 

 
6 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
7 https://keras.io/api/layers/ 
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one sequence into another (Vaswani et al., 2017), and it has made important contributions to the 
processing of human language. Building on the success of the transformer, BERT was introduced by 
Devlin et al., (2018) with the purpose of providing a pre-trained model that could be used in various 
tasks by just adding one additional output layer.  

BERT uses a technique called Masked LM, which involves randomly concealing words or subwords 
in the post and then attempting to predict what they are. Using subwords is a way of handling tokens 
that are not in the vocabulary by breaking them down into smaller parts. For instance, one of the 
instances in the TSD contains the word “buttfuckers”. If this token does not exist in BERT’s 
vocabulary the model can break it down into the subwords “butt” and “fuckers”, and interpret each of 
them separately. The model will try to predict the masked words or subwords by taking into account 
the words that come before and after at the same time. For instance, if you have the post “your dumb 
mother”, this would involve using both “your” and “mother” when predicting the toxicity of “dumb”. 
This approach allows BERT to use as much context as possible when making its predictions.  

BERT is open source, and a large number of pre-trained models that only require fine-tuning are 
readily available. The one used in this study was the ELECTRA-small implementation from 
TensorFlow Hub, which is automatically mapped to the preprocessing model with the same name.8 
Other BERT models were tested, and out of those the chosen one obtained the highest predictive 
performance scores. One dropout layer and one dense layer were used, and sparse categorical 
crossentropy was selected as the loss function. The choice of loss function was made since it allows 
returning a 2D-array of prediction probabilities, which is required by the LIME algorithm.  
Early stopping was used to determine the number of epochs, a patience of 2 was applied, which 
resulted in the model being trained during four epochs. As for the optimizer, Adam was chosen.  
 

3.2.4 Model Evaluation 

After having created the classification models, their respective performance in toxic TC was 
established using Precision (P), Recall (R), and F1 score, as well as the area under the precision-recall 
curve (AUPRC). Establishing these scores constitute the first part of the data collected in this study, 
and the P, R, F1, and AUPRC of each text toxicity classifier were logged in an observation schedule. 
The scores were denoted as Text Classification Precision (TC-P), Text Classification Recall (TC-R), 
Text Classification F1 (TC-F1), and Text Classification AUPRC (TC-AUPRC). This specification was 
introduced to avoid confusion since the measures were also used later to assess the quality of the 
explanations.  

To understand these measures, the confusion matrix must be introduced. The matrix contains the 
following categories; True positives (TP) are instances that are correctly labeled as positive, false 
positives (FP) are negative instances incorrectly labeled as positives, true negatives (TN) are negative 
instances predicted as negative, and finally, false negatives (FN) refer to positive instances which are 
labeled as negative (Davis and Goadrich, 2006). Figure 6 shows a confusion matrix in a toxic 
detection task: 

 
8 https://tfhub.dev/google/collections/electra/1 
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Figure 6  Confusion matrix for toxicity detection 

Toxic is the positive class when dealing with toxic language detection, which means that the 
categories in Figure 4 correspond to the following descriptions:  

 

• TP: Toxic is predicted, and the instance is in fact toxic 

• TN: Non-toxic is predicted, and the instance is in fact non-toxic 

• FP: Toxic is predicted, but the instance is non-toxic 

• FN: Non-toxic is predicted, but the instance is toxic 

 

A high number of FP’s is problematic because it indicates that our classifier considers non-toxic 
comments to be toxic. In practice, this could lead to the automated removal of harmless posts. A high 
number of FN’s on the other hand lead to an opposite issue, where toxic comments are labeled as non-
toxic and therefore left unaddressed.  

Precision and Recall 
The categories in the confusion matrix can be used to calculate different performance metrics, and the 
choice of which should be made considering the problem at hand. As previously discussed, toxic 
language detection often involves a skewed class distribution with a disproportionately small number 
of toxic, positive samples. This indicates that we are interested in metrics that focus on the classifier’s 
ability to predict positive samples. Precision and recall are examples of such. Based on a chosen 
threshold, precision establishes how many out of those predicted as positive are in fact positive, while 
recall determines how many out of those which are in fact positive have been correctly predicted as 
such. The definitions of precision and recall are presented as follows by Davis and Goadrich (2006): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
						𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁
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F1 score  
Ideally, we want to achieve both high recall and high precision. This indicates that our classifier is on 
point in detecting toxic instances while also recognizing positive instances as such. This is however 
not always the case. A classifier may have low recall and high precision, which means that it is overly 
picky in what it deems to be toxic. This results in it being precise in the predictions of positive 
instances, while the pickiness simultaneously leads it to miss many of them. High recall and low 
precision, on the other hand, indicate that the classifier is overly generous in handing out the positive 
class label. It predicts most toxic samples as toxic, but will, unfortunately, do the same for samples 
that are in fact non-toxic. This is a trade-off which for some ML-tasks makes it undesirable to observe 
the two metrics separately. In such cases, the F1 score can be a solution. It is the harmonic mean of 
precision and recall, and is defined as follows by Chinchor et al., (1993): 
 

𝐹1 = 2	𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑥	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 

 

The F1 score focuses on the classification of the positive class, making it especially suitable for 
measuring the classification performance in this study. It is measured in a range from 0 to 1, with 1 
being the ideal. Obtaining high TC-F1 scores is a challenge in the text toxicity domain, and studies 
show that the scores are in the range of 15-60 percentage points that for predicting non-toxic posts 
(Zhang and Luo, 2018) 

AUPRC 
Precision-Recall curves is another suitable measurement for problems with a skewed class 
distribution, and it summarizes the trade-offs between precision and recall for various probability 
thresholds (Davis and Goadrich, 2006). The recall is plotted along the Y-axis and the precision on the 
X-axis and the visual representation of an ideal curve involves being in the top-right hand corner. The 
curve gives a visually intuitive indication of the performance of the classifier, but it may still be 
relevant to obtain a numeric metric to further represent what is seen. The area under the precision-
recall curve can be used for this purpose, and as the name indicates, it is derived from the precision-
recall curve and is simply calculated as the area beneath it. Essentially, an AUPRC of 1 means that the 
model has found all toxic samples and has not labeled any non-toxic samples as toxic. The worst 
possible AUPRC is 0.  

 

3.2.5 Create Explanations 

After having evaluated the models using the measures described in Section 3.2.4, each was paired with 
LIME to generate the explanations. It should be kept in mind that the models were trained and 
evaluated using the CC, while the explanations were created and evaluated using the TSD.  
Visualization techniques can be added to make the explanations more user-friendly as previously 
shown in Figure 2, but in its essence, an explanation provided by LIME for textual data is a weighted 
list of words. The weight of a word indicates its individual contribution to the prediction probabilities 
for a specific sample. In the case of toxicity detection, any word assigned with a positive weight is an 
explanation of what the classifier perceives as toxic. An example of such a list has been shown in 
Chapter 1, Figure 1. Since only the words with positive weights are relevant when evaluating a 
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classification model's ability to predict toxicity, all those with negative weights were filtered out in this 
experiment.  

Implementing LIME: determining the number of words  
The explain instance function in LIME’s text module was used to generate the explanations.9 The user 
decides how many words to include in the explanation using the num_features parameter, and it will 
take the n features with the highest token weights and include them in the explanation. As previously 
discussed in Chapter 2, the number of words will have an impact on the interpretability of the 
explanation model. In addition, it was also established that choice of n had an impact on the quality of 
the explanations when evaluated against the ground truth values in TSD. Choosing a high n resulted in 
false positives, seeing as tokens with evanescently small weights were included in the predicted spans. 
Setting n = 1, on the other hand, resulted in false negatives since LIME would be constrained from 
including more than one toxic word in the explanation.  

The value of n was determined by calculating which integer value led to the explanation with the 
optimal fidelity for each instance in the dataset. In this context, optimal fidelity means that the 
explanation provided by LIME is the best possible approximation of how the base model, meaning the 
text toxicity classifier, would have predicted the given instance. This meant finding the n that would 
minimize L(f, g, πx), which has been previously discussed in Section 2.4.2. The approach for 
determining the value of n can be better understood through an example; assume that a base model 
predicts that the probability of a given instance being toxic is 60%. This would mean that the n leading 
to the optimal fidelity is the number of features whose summed weights have the smallest distance 
from 60. The optimal n was calculated individually in this manner for each instance in the TSD.  

Besides num_features, only default parameters were used when implementing LIME. However, 
special considerations were taken when exploring the options for determining the settings of the kernel 
width and the bow parameters, both of which are discussed below. An overall inference from working 
with the LIME library is that it contains many tunable and possibly influential hyperparameters. A 
more profound immersement in this area was not conducted due to the limited scope of the research 
project, but doing so is recommended to explore in future work. This could involve performing a 
highly systematic tuning and evaluation of all the hyperparameters in the LIME text module, which 
could allow a more profound understanding of their individual impact on the explanations. 

Implementing LIME: the kernel width parameter  
The kernel width parameter defines the size of the neighborhood, meaning where the surrogate model 
is trained to approximate the base model for the instance being predicted (Molnar and Kopper, 2020). 
The size of the neighborhood is defined as πx, and has previously been discussed in Section 2.4.2. The 
size is determined by applying weights to the tokens, and these weights are determined based on their 
similarity/proximity to the instance being explained. Choosing a kernel width to define this 
neighborhood in a correct manner is an unsolved problem in LIME (Zhao et al., 2020), and tuning was 
therefore performed to examine the effects. The tests showed that modifying the kernel width had only 
a minor influence on the results in terms of positive impact, and the parameter was thereby left at its 
default value of 25. A potential reason that the kernel width did not influence the scores considerably 
could be that changing this parameter did not modify the token weights to the point that the words 
went from being non-toxic to toxic, and vice versa.  

 
9 https://lime-ml.readthedocs.io/en/latest/lime.html#module-lime.lime_text 
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Implementing LIME: the bow parameter  
The bow-parameter was another LIME feature that was explored in closer detail. When set to true, 
which is the default, a bag of words model is adopted. In LIME, this means that the input text 
sequence is modified so that only a single occurrence of each word exists, leading to the position of 
the word being ignored. When set to false on the other hand, the word position is considered, which 
can help highlight the fact that a word can be important or not depending on where in the post it is 
found. For instance, the word “cow” can be non-toxic when preceded by “cute”, but toxic when 
preceded by “stupid”. The bow parameter can be set to false for classifiers that use word order. Setting 
this parameter to false seems desirable for more effectively detecting toxic spans, however, doing so 
resulted in lower quality explanations for both BERT and the LSTM. Therefore, bow was set to true 
for all classifiers. No clear conclusions as to why this parameter did not improve the quality of the 
explanations of the BERT and the LSTM models were drawn, and this phenomenon is an example of 
what could be explored in future research.   

 

3.2.6 Evaluate Explanations 

The quality of the explanations was assessed using two forms of ground truth values from the TSD. 
Firstly, the spans column was used as ground truth to perform a binary evaluation. This means that a 
binary verification was made to check whether the character offset of the tokens identified by LIME 
also existed in the TSD spans column. If this was the case, it would indicate that LIME had detected 
the same words as the human annotators. Secondly, the token probabilities column in the TSD was 
used to perform a numeric evaluation. This means comparing the ground truth token probabilities 
against the weights assigned by LIME on the word level. Doing so allowed establishing how sensible 
the LIME weights were, the goal evidently being that these values should be as similar as possible to 
those established by the annotators. The two categories of evaluation are discussed in further detail 
below.  

Binary Comparison   
The explanations of each classification model were evaluated by comparing them against the spans 
column in the TSD. These spans have been established by annotators, and can thereby be seen as the 
ideal explanation concerning which parts of the text are toxic. In order to conduct a comparison 
between the explanations created by LIME and the offsets of the ground truth toxic spans, the 
explanations were converted into character offsets. These are shown in the LIME explanation column 
in Table 3. The metrics used in the evaluation were precision, recall, and F1 score on the character 
level. For clarity, these were denoted as Span Detection Precision (SD-P), Span Detection Recall (SD-
R), and Span Detection F1 (SD-F1), and the evaluation can be understood by inspecting Table 3: 
 

spans	 text lime_explanation SD-P SD-R SD-F1 
0  

[29, 30, 31, 32, 33, 34] 
 
How about we stop protecting idiots 
and let nature add some bleach to 
the gene pool. We can always 
submit their names for the Darwin 
awards. 
  

 
[29, 30, 31, 32, 33, 34] 

 
1 

 
1 

 
1 

1  
[35, 36, 37, 38, 39, 40, 
41, 42, 49, 50, 51, 52, 
53, 54, 55, 61, 62, 63, 
64, 65, 66, 67, 68, 
69,  70, 71, 72]  

 
Trump said, IN AS MANY WORDS, 
that Mexicans were rapists and drug 
dealers 

 
[35, 36, 37, 38, 39, 40, 
41, 42, 49, 50, 51, 52, 
53, 54, 55] 

 
1 

 
0.555 

 
0.714 

Table 3  LIME explanations with correct predictions (TP) in green, and missed words (FN) in blue 
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As shown in Table 3, the explanation created by LIME is an exact match to the target for the instance 
with index 0. This means that the explanation only contains true positives, resulting in perfect SD-P, 
SD-R, and SD-F1 scores of 1. For the sample with index 1, however, LIME has missed several words 
starting from offset 56 and upwards. This means that the prediction contains false negatives, namely 
“drug” and “dealers”, in the sense that non-toxic was predicted when the words were in fact toxic. 
LIME did, for some reason, not assign positive weights to some of the words in the comment which 
the human annotators deemed as toxic. This resulted in an SD-R of 0.555 and an SD-F1 score of 
0.714. Using this approach, a character-based evaluation could be established for the explanation of all 
instances in the test set. For each of the metrics, these values were summarized into a single, macro-
averaged score, meaning that the mean of all evaluation instances was established.  

The evaluation using the spans column as ground truth was done in a binary manner; the predicted 
offsets are either a match to those in the spans column, or they are not. Essentially, this will tell us if 
the classifiers when paired with LIME manages to recognize the same toxic words as the human 
annotators did. This is a relevant observation, however, it does not provide an understanding of the 
correctness in assessing the individual importance of those toxic words. For instance, this could help 
establish if LIME manages to recognize that the toxic word X is far more severe than the toxic word 
Y.   

Numeric comparison   
For the purpose of providing information concerning the importance of individual words, the token 
weights generated by LIME were compared against the token probabilities in the TSD. Optimally, the 
token weights should be close to the token probabilities. In order to establish if this was the case, the 
MSE was utilized, which is defined as follows by Mood et al., (1974):  
 

𝑀𝑆𝐸 =
1
𝑁
∑
%&'

(
(𝑓% − 𝑦%)) 

 

N represents the number of observations, and for each instance, this will be equivalent to the number 
of words in its toxic post. fi corresponds to the token weight returned by LIME for word i in the toxic 
post, while yi  represents the actual value for word i, meaning its token probability (representing the 
fraction of annotators who included the word in their toxic spans). In the cases where the token 
weights were negative, meaning that LIME interpreted the words as non-toxic, the values were set to 
zero to enable comparison against the token probabilities. The MSE was denoted SD-MSE to maintain 
consistency between all scores that evaluate the explanations. Table 4 demonstrates an example of 
how the SD-MSE can be established for the toxic post “Screw you”: 

 Token probability Token weight LIME Sq. Error 

‘Screw’ 0.66 0.45 0.0441 

‘you’ 0.33 0.11 0.0484 

    

  SD-MSE 0.046 

Table 4  SD-MSE for a toxic post 

For each toxicity classifier, the SD-MSE was established for each instance in the TSD. In addition, 
their respective mean SD-MSE was calculated across all instances in the dataset.  
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Explanation quality  
The binary and the numeric evaluation approaches presented above were used side by side to assure 
that the quality of the explanations could be established. As previously discussed in Chapter 1, the 
quality of the explanations refers to the extent to which LIME is able to distinguish toxic words from 
non-toxic ones by assigning them with weights that reflect their toxicity (or lack thereof). The concept 
of evaluating the explanations using the chosen measures can be better understood through an 
example. Figure 7 demonstrates what would constitute an optimal explanation when using the chosen 
evaluation measures: 

 

Figure 7  Example of a toxic post and its optimal explanation 

Figure 7 illustrates the fact that an optimal explanation is one that corresponds fully to the ground truth 
values established by the human annotators. It should be kept in mind that the negative LIME weights 
representing the non-toxic words were set to zero when calculating the SD-MSE. LIME has thereby 
attributed token weights that are a perfect match to the token probabilities assigned by the human 
annotators, resulting in optimal explanation scores across all measures. Such accuracy is evidently not 
always the case, and there are many possible scenarios that could lead to lower scores. For instance, 
the token weights of the toxic words could have been higher or lower, resulting in a greater MSE. 
Non-toxic words such as “you” could have been mistaken for a toxic one, resulting in a lower SD-P 
and a higher SD-MSE. A toxic word such as “idiot” could have been recognized as non-toxic, 
resulting in a lower SD-R and a higher SD-MSE.   

 

3.2.7 Data Analysis 

The overriding focus of this study was to examine the nature of the relationship between the TC-scores 
and the SD-scores. The former represents the classification performance, and the latter the quality of 
the explanations. The procedure used to establish the predictive performance scores has been 
described in Section 3.2.4, and the approach used to represent the quality of the explanations has been 
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presented in Section 3.2.6. The purpose of this section is to clarify how the collected data was used to 
answer the research questions.   

Main research question and sub-question 1  
The main research question of this thesis is What is the relationship between the predictive 
performance of text toxicity classifiers and the quality of the explanations they produce? The 
following sub-question can be considered an elaboration of the main research question: Do text 
toxicity classifiers with a higher predictive performance produce explanations of higher quality 
compared to those with lower predictive performance? The liaison between the classification 
performance and the quality of the explanations was examined through Spearman's correlation 
coefficient, denoted as rs. The coefficient measures the strength and direction of a monotonic 
relationship between two variables, and is defined as follows according to Artusi et al., (2002): 

𝑟* = 1 −
6∑𝐷)

𝑛(𝑛) − 1)
 

 
D represents the difference between the two ranks of each observation, while n represents the number 
of observations. The observations consisted of the TC-F1 and the SD-MSE. The SD-MSE was chosen 
since it was considered the most essential score when it comes to assessing the explanations, seeing as 
it provides a higher level of detail compared to the binary evaluation measures. The higher level of 
detail comes from the fact that the measure will disclose how close to the ground truth the explanation 
came when assessing the level of toxicity of individual words. The binary scores, on the other hand, 
will only disclose to what extent the classifiers recognized the individual words as toxic or non-toxic.   

It should be kept in mind that the optimal value for the SD-MSE is zero. Therefore, an rs close to -1 
would indicate that higher predictive performance on the TC level is associated with LIME assigning 
the token weights in a more sensible manner on the SD level. According to Corder and Foreman 
(2009), the relationship strengths associated with various values of the correlation coefficient can be 
interpreted as shown in Table 5: 

Correlation Coefficient for a Direct 
Relationship 

Correlation Coefficient for an Indirect 
Relationship 

Relationship Strength 

0.0  0.0 None/Trivial 

0.1 -0.1 Weak/small 

0.3 -0.3 Moderate/medium 

0.5 -0.5 Strong/large 

1.0 -1.0 Perfect 

Table 5  Relationship strengths for the Spearman correlation coefficient 

 

To ensure that the main research question could be answered in a precise manner, the null- and an 
alternative hypothesis were formulated as follows:  

Null Hypothesis (H0): There is no monotonic relationship between the predictive performance of text 
toxicity classifiers and the quality of the explanation they produce. 

Alternative Hypothesis (H1): There is a monotonic relationship between the predictive performance 
of text toxicity classifiers and the quality of the explanation they produce.  

An alpha value of 0.05 was chosen to evaluate these hypotheses. Corder and Forman (2009) describe 
the alpha value as the probability of rejecting the null hypothesis by mistake when it is true. In order to 
assess if this is the case, a p-value is calculated. It allows evaluating the likelihood that the observed 
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relationship between the predictive performance and the explanation quality for the chosen sample 
have occurred by random chance. A p-value lower than alpha would indicate that the null hypothesis 
can be rejected. 

Sub-question 2  
The second sub-question was incorporated to ensure that it was established which classifier produces 
the best quality explanations, and is formulated as Which one out of the examined text toxicity 
classifiers produces the highest quality explanations? The SD-MSE was once again chosen as the 
most suitable measure to answer this question due to its elaborateness. Thereby, the classifier with the 
highest quality explanations is deemed to be whichever produces the lowest SD-MSE.   

Sub-question 3  
The purpose of including the final sub-question was to provide a more in-depth understanding of the 
individual explanations produced by each of the five classifiers, and was formulated as What are the 
properties of explanations provided by text toxicity classifiers? This was answered by individually 
examining all the explanation scores. The chosen metrics highlight strengths or issues that the 
classifier may have when making the predictions. For instance, a classifier with a low recall but high 
precision on the token level would indicate that it is picky and does not consider many words as toxic. 
However, when it does, it is usually on point.   
 

3.2.8 Summary of Evaluation Measures  

In summary, four different metrics were used to assess the classifiers in the TC task, and an additional 
four to evaluate the explanations. As a final data analysis, the rs was calculated to establish the 
relationship between the TC-F1 and the SD-MSE. All measures starting with “TC” refer to an 
evaluation on the text level and have been established using the Civil Comments dataset. All those 
starting with “SD” refer to the evaluations on the spans level and have been established using the 
Toxic Spans dataset. In Table 6, all evaluation measures and their the optimal values are presented: 

Measure  Description  Optimal Value 

TC-P The extent to which the instances predicted as toxic are in fact toxic. 1 

TC-R The extent to which the toxic instances have been predicted as toxic.   1 

TC-F1 The harmonic mean of the TC-P and the TC-R. 1 

SD-P The extent to which the spans predicted as toxic are in fact toxic.  1 

SD-R The extent to which the toxic, ground truth spans have been predicted as toxic.   1 

SD-F1 The harmonic mean of the SD-P and the SD-R.  1 

SD-MSE The MSE of the token weights assigned by LIME, and the ground truth token 
probabilities in the TSD.  

0 

Table 6  Overview of evaluation measures 

In addition to the evaluation measures presented in Table 6, the rs of the TC-F1 and the SD-MSE was 
established in order to answer the main research question. The description of this final analysis is 
described in Section 3.2.7.   
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3.3 Ethical Considerations 

Ethics and a discussion thereof are a key part of any research project. The main focus in this area 
relates to potential participants in a research project; their interest must be protected, their participation 
voluntary and there must be transparency concerning the intended use of the data they provide 
(Denscombe, 2010). This study aims to compare and assess explanations provided by LIME when 
paired with a number of machine learning mechanisms. These classifiers are trained and evaluated on 
large datasets containing text collected from a commenting plugin for independent news sites. There 
is, in that sense, usage of data generated by humans, even though they have not directly participated in 
the study. These individuals have left comments on a public site, which made it possible for the 
creators of the CC to legitimately scrape and transfer them to a publicly available dataset containing 
approximately 1.9 million samples.  

The reason why the usage of this data in the current research project does not call for any additional 
action is that it is anonymized. Nor the actual names or the usernames of the individuals posting the 
comments are included, which means that their identities are protected in the dataset. It should be kept 
in mind, however, that it theoretically could be possible to obtain the identities of these individuals 
using alternative measures. For instance, one could google one of the toxic comments and see if it lead 
to its original posting.   
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4 Results 
 

This chapter contains the results of the thesis, and it is divided into three main parts. The first one 
presents the predictive performance scores of the classifiers, which consist of precision, recall, F1, and 
AUPRC on the TC level. Secondly, the evaluations of the explanations on the SD level are presented. 
As for the binary evaluation of the toxic spans identified by LIME, the scores comprise precision-, 
recall- and F1-scores, while the numeric evaluation involves establishing the MSE. Finally, the 
relationship between the predictive performance of the classifiers and the explanations they produce is 
established using Spearman’s rs.  

4.1 Predictive Performance Measures 

The text toxicity classifiers Naïve Bayes, Logistic Regression, Random Forests, LSTM, and BERT 
were trained and tested on the CC, and their predictive performance scores in text classification are 
presented in Table 7:  

 

 TC-P TC-R TC-F1 TC-AUPRC 

NB 0.952 0.041 0.080 0.469 

LR 0.818 0.369 0.509 0.670 

RF 0.751 0.411 0.531 0.632 

LSTM 0.781 0.545 0.619 0.708 

BERT 0.701 0.755 0.726 0.806 

Table 7  TC Predictive performance scores of the text toxicity classifiers 

The bolded values in the table indicate the best score for each evaluation measure. The predictive 
performance scores can be further interpreted by the clustered columns chart shown in Figure 8:  
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Figure 8  Visualization of predictive performance of classifiers 

The TC-P of NB is higher than that of all other classifiers, while the TC-R is close to zero. This TC-P 
score indicates that the vast majority of the instances that NB deems to be toxic, are in fact toxic. 
There are few false positives, in other words. Meanwhile, its TC-R indicates that it has been overly 
picky in assigning the toxic class label, resulting in it wrongfully classifying toxic samples as non-
toxic ones. This means that NB produces a large number of false negatives, which decreases the 
overall classification performance.  

LR and RF follow a similar pattern as NB, meaning that the TC-P is higher than the TC-R. However, 
they both manifest considerably higher recall than NB, which subsequently results in better TC-F1 and 
TC-AUPRC. The LSTM also has higher TC-P than TC-R, but the gap between the two is less 
significant than for LR and RF. BERT is the classifier that obtains the best balance between TC-P and 
TC-R, and it also has the highest TC-F1 and TC-AUPRC.  

4.2 Explanation Quality  
After having trained and tested the classifiers, explanations were generated for each of them using 
LIME with the toxic spans test set. The evaluation was broken down into two categories, namely a 
binary and a numeric assessment, both of which are presented below.   
 

4.2.1 Binary Evaluation 

To enable the binary evaluation of the explanations, the words predicted as toxic by LIME were 
transformed into character offsets. These were then compared against the ground truth character 
offsets in the spans column of the toxic spans test set, and SD-P, SD-R, and SD-F1 scores were 
calculated for each instance in the test set. The macro averaged values of those scores are presented in 
Table 8: 
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 SD-P SD-R SD-F1 

NB 0.550 0.683 0.536 

LR 0.687 0.653 0.607 

RF 0.669 0.601 0.578 

LSTM 0.774 0.571 0.612 

BERT 0.647 0.700 0.611 

Table 8  Macro averaged SD-P, SD-R and SD-F1 of the classifiers 
The binary explanations scores shown in Table 8 are visualized in the clustered column chart in Figure 
9:  

 

Figure 9  Visualization of the binary evaluation of the explanations on the SD level 

In Table 8 and Figure 9, the SD-P of Naïve Bayes demonstrates that the model has a greater tendency 
than the others to misclassify non-toxic words in the posts as toxic. The SD-R on the other hand is the 
second highest out of all classifiers, meaning that it is relatively vigorous when it comes to assigning 
the correct class label to the target spans. The macro averaged SD-F1 of NB ends up as the lowest out 
of all the classifiers. Figure 8 also makes it evident that BERT follows a similar pattern as NB when it 
comes to span detection, with the difference being that the scores of BERT are higher.  

The scores of Logistic Regression and Random Forest have a highly similar distribution, with the 
scores of the former being slightly higher. The allocation of their scores stands in opposition to those 
of NB and BERT in the sense that the LR and RF are more performant when it comes to SD-P than 
SD-R. This demonstrates that the token predictions that they made are correct to a higher extent than 
those of NB, but the lower levels of SD-R show that they also tend to miss some of the toxic words in 
the spans column, or entire spans. The LSTM also follows the distribution of having higher precision 
and lower recall. The SD-P is in fact the highest out of all classifiers, meaning that it is superior when 
it comes to recognizing the ground truth spans as toxic. The SD-R is lower, on the other hand, 
indicating that the LSTM also tends to miss toxic words when making its predictions. The LSTM and 
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BERT outperformed the other classifiers, with the LSTM obtaining the slightly higher SD-F1 out of 
the two.  

 

4.2.2 Numeric Evaluation  

The numeric evaluation of the explanations was conducted by comparing the token weights generated 
by LIME against the token probabilities in the toxic spans test set. This allowed establishing the SD-
MSE for each instance in the test set, which was then summarized into a single score using the mean. 
Table 9 shows the mean SD-MSE of the token weights and the token probabilities of each classifier. It 
should be kept in mind that the desire is for the token weights to be as close to the token probabilities 
as possible, meaning that the lowest possible SD-MSE is preferred: 

 MEAN MSE 

NB 0.191 

LR 0.170 

RF 0.133 

LSTM 0.140 

BERT 0.085 

Table 9  Mean SD-MSE of the classifiers 
The mean SD-MSE values shown in Table 9 can be further interpreted through the column chart in 
Figure 10: 

 

Figure 10  Visualization of SD-MSE of the classifiers 
Table 9 and Figure 10 demonstrate that Naïve Bayes has the highest SD-MSE. This indicates that its 
manner of assigning weights, as interpreted by LIME, is the furthest from the ground truth values out 
of all the classifiers. Logistic Regression has a somewhat lower error than NB, while the errors of RF 
and LSTM are found at an even lower level. The classifier which assigns weights in a manner most 
similar to that of the annotators is BERT, which presents an SD-MSE of 0.085.  
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4.3 Predictive Performance and Explanation Quality 
 

The relationship between the predictive performance of the classifiers and the quality of their 
explanations was established to answer the main research question. The Spearman correlation 
coefficient was established for the relationship between the TC-F1 and the SD-MSE, and these values 
have previously been presented in Tables 7 and 8 respectively. Table 10 shows them side by side, as 
well as the p-value and the final rs: 

 TC- F1 MEAN SD-MSE 

NB 0.080 0.191 

LR 0.509 0.170 

RF 0.531 0.133 

LSTM 0.619 0.140 

BERT 0.726 0.085 

   

 p-value 0.037 

 rs -0.899 

Table 10  Spearman rs of the TC-F1 and the SD-MSE 

In Table 10, the TC-F1 represents the predictive performance of the classifiers, while the SD-MSE 
represents the explanation quality. The correlation is further demonstrated through the scatter plot 
shown in Figure 11: 

 

Figure 11  Spearman correlation between the predictive performance and the explanation quality 

A p-value of 0.037 was established. This makes it lower than the chosen alpha of 0.05, meaning that 
the null hypothesis can be rejected and the alternative hypothesis accepted. The value of the 
coefficient is -0.899, and by consulting Table 5 it is established that this constitutes a strong/large 
indirect relationship. The fact that the coefficient is negative means that higher TC-F1 scores are 
associated with lower mean SD-MSE scores, and vice versa. In other words, classifiers that have 
higher predictive performance on the text level tend to assign token weights that are closer to the 
ground truth. Conversely, classifiers with lower predictive performance tend to assign token weights 
that are further from the ground truth.  
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5 Discussion  
 

This chapter contains the discussion of the thesis, and firstly, the findings presented in the Chapter 4 
are evaluated. Thereafter the research quality is debated with regards to strengths and potential 
limitations, and the societal and ethical consequences are also deliberated. Finally, suggestions for 
future work are given and the study as a whole is concluded.   

5.1    Evaluation of the Findings 

The first step of the data collection involved establishing the predictive performance scores of the 
classifiers on the TC level. Logistic Regression, performs relatively well in this task, something that 
has been documented in previous studies (Kajala, 2020; Pranckevičius and Marcinkevičius, 2017). In 
addition, the findings of Nowak et al., (2017) concerning the LSTM’s suitability for short text 
sentiment classification was confirmed, as well as those of Gordeev and Lykova (2020) showing 
BERT’s superiority over all other models when it comes to classifying aggression in short text. 

It was also noted that all classifiers except BERT followed a trend of having a lower recall and higher 
precision on the TC level. This is aligned with the previously discussed statement made by Fernandez 
et al., (2018), namely that fewer examples of a certain class may lead to classification bias towards the 
majority class. In the CC dataset, the majority class is the non-toxic one. The low recall manifested by 
several of the classifiers is an indication that they tend to produce false negatives, meaning that non-
toxic is predicted when the samples are in fact toxic. This is logical since the models have been 
exposed to much more non-toxic instances than toxic ones. As described by Liu et al., (2009), Naïve 
Bayes is especially challenged in this area, which was confirmed by a TC-R score close to zero. 

However, the main focus of this thesis was not to establish one classifier’s superiority over the others 
based on their predictive performance on the TC level. Instead, this was merely a means to the end of 
determining whether the predictive performance is indicative of the quality of the explanations of text 
toxicity classifiers. The second step therefore involved assessing the quality of the explanations, and 
the evaluation was broken down into two categories. The first approach was a binary assessment of the 
ability of the classifiers to detect toxic words and spans. As a point of reference, the highest-ranking 
F1 score in the SemEval contest was 0.708. It is considerably higher than the best SD-F1 in this thesis, 
being the LSTM’s score of 0.612. This difference can to some extent be attributed to the context; the 
end goal for the SemEval contestants was to achieve the highest possible scores in terms of span 
detection. As for this thesis, however, high SD scores are not an end goal per se. Instead, the focus is 
on exploring the association between such scores and those obtained on the TC level.  

As for the binary SD-F1 assessment, it became evident that the difference between the chosen 
classifiers was not substantial, and the scores were all within a fairly limited range; the lowest SD-F1 
was 0.536, and the highest 0.611. This can be put in relation to the range of the TC-F1, where the 
lowest score was 0.080, and the highest 0.726. An important note, however, is that the TC was done 
using both toxic and non-toxic posts. The SD, on the other hand, was performed using only toxic posts 
due to the design of the TSD. This means that we cannot be sure what the scores would have been in 
case non-toxic posts had been incorporated into the dataset. The scores of the current span detection 
indicate that higher predictive performance in the TC task does not necessarily yield a proportionate 
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payoff in terms of improved span detection. At least not when conducting a binary assessment. As 
speculation, a possibility would be that including non-toxic instances in the TSD would lead to the 
strengths and weaknesses of the individual models coming through in a more distinctive manner. More 
precisely, that the stronger models would achieve even better scores on the SD level, while the weaker 
ones would do just the opposite. For instance, BERT has a strong classification performance in terms 
of both recall and precision, which indicates that it is more on point in distinguishing the two classes. 
Yet, in order to draw more firm conclusions concerning this aspect, the problem must be revisited 
using a dataset containing non-toxic posts.  

The SD-P and the SD-R allowed giving a more nuanced understanding of the properties of the 
classifiers, since these scores manifested greater variations than the SD-F1. For instance, BERT and 
NB were superior when it came to the SD-R, while LR and the LSTM were the top players in the 
category of the SD-P. There can be many reasons for this, and it is beyond the scope of this thesis to 
establish what they are. Nonetheless, this makes an interesting starting point for future work.   

Once the binary assessment was concluded, investigations were made concerning in what way 
individual words in the posts influenced the predictions of the classifiers. The values of the SD-MSE 
showed that, on average, the token weights assigned by NB were the furthest away from the ground 
truth probabilities, while BERT’s were the closest. The other classifiers were scattered in between 
these two in terms of scores.  

The values of the SD-MSE’s become highly interesting when regarding them side by side with the 
SD-F1. As mentioned, the SD-F1 scores were fairly similar across the various classifiers, despite their 
TC-F1 varied greatly. When factoring in the SD-MSE, this suddenly makes more sense. It becomes 
evident that yes, a model with low TC scores such as Naïve Bayes can manage to distinguish a non-
toxic word from a toxic one to a reasonable extent. However, where it falls short compared to the 
state-of-the-art is when assessing the importance of these words. For example, it may recognize that 
“idiot” is a bad word. It will therefore assign the token with a positive weight, however, this weight is 
very low in comparison to the one assigned by the human annotators. In that sense, the model is 
underestimating the toxicity of the toxic words. This may be an explanation as to why NB had a recall 
score close to zero on the TC level, which indicates that the model is missing a lot of toxic instances 
when assigning class labels. Underestimating the toxicity of individual words may naturally lead to the 
misclassification of the post as a whole.  

The lowest SD-MSE was obtained by BERT, and thereby, the sub-research question asking which text 
toxicity classifier produces the best explanations has been answered. The SD-MSE of BERT was also 
considerably lower than that of RF, which came in as the second-lowest. Further validation of               
BERT’s suitability in this task can be obtained by inspecting the SD-MSE alongside the SD-F1, which 
is also at the top of the class. In the same way that the high SD-MSE of Naïve Bayes was an 
explanation to its inferior predictive performance on the TC-level, the low error of BERT can 
potentially be seen as an answer as to why BERT is doing well when predicting toxic text. The way 
the model interprets the importance of individual, toxic words is more aligned with the perceptions of 
the human annotators, which subsequently makes it more pertinent in assigning the correct class label 
for an entire post. 

The SD-MSE was chosen as the primary score to assess the quality explanations in this study. 
Therefore, the final data analysis involved establishing the Spearman rs between the TC-F1 and the 
SD-MSE to allow answering the main research question and sub-question 1. The coefficient had a 
value of -0.899. By using the p-value it could be established that there is reason to believe that the 



38 
 

alternative hypothesis is true, meaning that There is a monotonic relationship between the predictive 
performance of text toxicity classifiers and the quality of the explanation they produce. The token 
weights assigned by models with a higher predictive performance on the TC level are more sensible 
than those assigned by models with a lower predictive performance. Essentially, this means that the 
quality of the explanations is higher when the predictive performance is higher, and vice versa. 
Finally, sub-question 3 involved understanding the properties of the explanations of the individual 
classifiers. This question does not have a short and clear-cut response. Instead, the answer is obtained 
by inspecting the figures and tables in Section 4.2.1- 4.2.2, and by following the elaboration of these in 
the argumentation presented in this discussion.  

5.2.   Research Quality and Limitations 

Validity and reliability are important cornerstones of any research study, and the meaning of these 
concepts in quantitative studies has been discussed by Heale and Twycross (2015). The authors 
describe validity as the extent to which something has been accurately measured, while reliability is 
used to assess the accuracy of the instrument being used to make the measures. A desired attribute for 
the latter is that it produces consistent results when used repeatedly.   

In the case of this study, assuring validity involves establishing that we are in fact measuring toxicity, 
and that this is done using well-established measures such as F1 score and MSE. The validity is 
strengthened by using the TSD as ground truth values. The dataset contains thousands of instances for 
which human annotators have distinguished toxic words from non-toxic ones, making it a solid 
benchmark. Validity is also reinforced through Observation, the chosen data collection method. It is 
regarded as having high validity, seeing as the process of making structured observations helps ensure 
structure and consistency in the measurements (Given, 2008). With that said, there is always a 
possibility of human error, and perhaps especially so when the research project is conducted by a 
single individual. Not even well-defined observation schedules can shield us from that, making it a 
possible restraint for the validity of this study.  

A potential limitation of the study is the fact that there is a limited amount of data collected for the 
final analysis, a fact that became especially evident when inspecting the scatter plot in Figure 11. 
There are five observations in terms of the predictive performance of the classifiers, and another five 
representing the quality of the explanations. This may affect what is known as external validity, also 
known as generalizability. It refers to the extent to which the results can be generalized from the 
sample used in the study to the population as a whole (Ali and Yusof, 2011). The population as a 
whole, in this case, would refer to text toxicity classifiers in general. Incorporating more of them in the 
study could have made the findings more generalizable, and the choice of not doing so was purely 
pragmatic due to time restrictions. Expanding the study by adding additional models is recommended 
in future work.   

As for reliability, the main area of interest is LIME’s ability to create consistent explanations. An 
explanation by LIME is a local approximation by the surrogate model of the base model’s behavior 
(Ribeiro et al., 2016). This way of approximating results in each explanation being unique. Concretely, 
this means that the token weights for the same instance being explained twice using the same base 
classifier will be slightly different. In this aspect, LIME can be seen as having a limitation by design 
when it comes to reliability if one chooses to take a highly critical mindset. With that said, the 
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differences between the individual explanations are evanescently small, and should therefore not be 
seen as considerable problems in terms of reliability.  

A final, important aspect to keep in mind in quantitative research is reproducibility. In the machine 
learning field, it can be described as the ability to repeat a study with a high level of agreement in the 
results (Olorisade et al., 2017a). Reproducibility can never be obtained unless key details concerning 
the experimental setup are disclosed in the paper, and Olorisade et al., (2017b) have defined multiple 
aspects as important for text mining research studies; the datasets and how to retrieve them must be 
clarified, as well as how the data was preprocessed and partitioned for training and testing. The 
process of training the models should be disclosed, and relevant details concerning parameter setting 
should be presented including seed values for randomization. Finally, the software environment should 
be disclosed so that information concerning versions of the packages and modules used can be 
determined. All of the stated requirements have been accounted for in this thesis. In addition, links to 
all relevant implementations have been provided to enhance reproducibility. Despite having fulfilled 
these requirements, it is difficult to be completely assured that the results are fully reproducible. The 
study consists of many phases and components, and there is always a risk of one of them being 
interpreted incorrectly.  

 

5.3    Ethical and Societal Consequences 

Ethical and societal consequences may follow the findings of any research study, and it is therefore 
important to consider what such aspects could be for the project at hand. A recent report on such 
consequences in the domain of algorithms, data, and artificial intelligence was examined with the 
purpose of providing an in-depth understanding of the issue. In it, Whittlestone et al., (2019) describe 
these consequences as those that can impact different parts of society by either threatening or 
enhancing established values. It should be noted through this formulation that such consequences may 
be negative as well as positive. One category of consequences is defined as the one which involves 
automation and more efficient use of data resulting in individuals losing their livelihoods. Other 
technologies may be optimized for a certain group, while creating risks on a societal level. On the 
other hand, there is no doubt that various machine learning solutions have helped lift our society, such 
as those improving health care, home security, environmental protection, and so on.  

The findings in this study can help improve the robustness of assessments of text toxicity classifiers. 
The positive effects of improving ways to correctly identify toxic language have obvious positive 
effects. Identifying and removing such language helps maintain a constructive online environment due 
to minimized exposure to malicious manifestations. In a day and age where we spend more time 
online than ever, this can be considered an important contribution. It is, however, important to keep 
the principles of free speech in mind in order to not overstep by conducting censorship. Toxicity 
detection operates with the goal of identifying and often also removing abusive language, and it is 
therefore important to be mindful of the boundaries in taking such activities too far.  
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5.4    Future Work 
The work presented in this thesis opens multiple doors in terms of future work, and the most relevant 
ones are defined as follows: 

Incorporate more text toxicity classifiers  
A natural starting point for future work would be to expand the scope of this study by examining the 
explanations of more text toxicity classifiers. This could include well-established models such as 
Decision Trees and Support-Vector machines, but also additional BERT-based models. Doing so 
allows gathering more data, which subsequently provides more substance and generalizability to the 
results. Besides including more classifiers, it could also be of interest to perform a more systematic 
tuning of the ones already included.  

Incorporate non-toxic posts in TSD  
Another way of expanding the study would be to include non-toxic posts in the TSD. In order to 
simulate the natural underrepresentation of toxic language compared to non-toxic, such an approach 
could involve letting the toxic samples constitute the minority class.    

Use the same methodology in another NLP task  
In addition to exploring the problem even further in toxicity detection by adding more models, it 
would also be of interest to transfer the exploration to other areas of the NLP domain. The assumption 
that predictive performance on the TC level is a sufficient way to establish a superior model is surely 
not unique for the research area of toxic language detection. For instance, the exploration could be 
applied to sentiment classification on online reviews. The task would then involve establishing if the 
explanations provided by the models when paired with LIME did in fact manifest the sentiment to be 
expected for the established class label.   

Improve classification performance of text toxicity classifiers  
Another interesting exploration would be to use the findings as a diagnostics tool to help improve the 
individual models used in the study. For instance, the results show that the SD-R score of the LSTM 
model’s explanations is relatively low. This sheds light on a shortcoming, namely that it has a 
tendency to misinterpret toxic words as non-toxic ones. Using this information insightfully can help 
guide efforts in how best to improve the model so that the overall classification performance can 
improve. Similarly, the SD-P of BERT is actually lower than that of LR, RF, and considerably lower 
than that of the LSTM. This evidently opens doors for further exploration and study, seeing as the 
model is considered state-of-the-art in the NLP community.  

As a more general suggestion, future research could also consider gathering more information 
concerning how to best use LIME in the domain of text classification. LIME’s implementation 
contains many hyperparameters, and understanding the impact of these is of interest considering the 
algorithm’s previously discussed popularity in the NLP domain.   

 

5.5    Conclusion  

The aim of this study was to examine the relationship between the predictive performance of text 
toxicity classifiers, and the quality of the explanation they produce. To do so, an experiment was 
performed during which five classifiers were evaluated, namely Naïve Bayes, Logistic Regression, 
Random Forests, LSTM, and BERT. Firstly, their predictive performance was established, and 
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secondly, LIME explanations were created and assessed with regards to their quality. A dataset for 
which toxicity had been established on the spans- and token level allowed creating and evaluating the 
explanations. The execution of the research project allowed responding to the research questions, and 
the answers to these can be summarized as follows: 

• There is a monotonic relationship between the predictive performance of text toxicity 
classifiers and the quality of the explanations they produce. Models with a higher predictive 
performance assign token weights in a manner that is more aligned with the ground truth 
values than models with a lower predictive performance.   

• Text toxicity classifiers with a higher predictive performance produce higher quality 
explanations.  

• BERT is the classifier that produces the highest quality explanations. This nomination was 
primarily based on the fact that it assigned token weights in the most accurate manner, 
however, it was also at the top alongside the LSTM when it came to predicting toxic words 
and spans.  

• The properties of the explanations produced by the different classifiers vary. This thesis has 
shown that some of the models tend to misclassify non-toxic words as toxic ones, while others 
do just the opposite. Certain models are also more on point when it comes to attributing token 
weights that are more aligned with the ground truth values than others.  

The findings indicate that low predictive performance on the text classification level does not 
necessarily translate to the model being poor in recognizing toxic words. For instance, Naïve Bayes 
demonstrated decent scores in span detection despite struggling considerably when it came to text 
classification. However, this discovery should be read in the light of there not being any non-toxic 
samples used in the creation and assessment of the explanations, as was the case during the text 
classification. A contributing factor to the variating predictive performance scores could be found 
when examining the way the classifiers assigned the individual token weights. The scores revealed 
that BERT was much closer than all other models when it came to assigning weights that were in 
alignment with the ground truth values, while Naïve Bayes had a relatively high error. Based on this, 
BERT was concluded as the model which produces the highest quality explanations. 

The high-level contribution of this study involves having provided an increased understanding of the 
inner working of text toxicity classifiers. Explainability does just that, and applying LIME in a 
systematic and large-scale manner allowed collecting valuable data. By answering the research 
questions, the thesis has also helped shed light on how indicative the predictive performance of text 
toxicity classifiers is for the quality of the explanations. Possibilities for future work include 
incorporating more classifiers in the experiment and adding non-toxic samples to the TSD. Another 
area recommended for future exploration involves gaining a greater understanding of the LIME text 
module when used in toxicity detection. The parameter restricting the number of words used in the 
explanation was shown to have a considerable impact on the quality of the explanation, and this is an 
example of what could be explored further in future research.  
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Appendices 

Appendix A – Reflection Document 

• How does your study correspond to the goals of the thesis course? Why? Focus on the goals that 
were achieved especially well and those that were not well achieved. 

I do believe that I have achieved the goals of the thesis project in a satisfying manner. It helped me a 
lot that I took this endeavor very seriously from day one, and I put a lot of effort into planning my 
work based on the course goals. One of the first things I did was to study the thesis instruction 
document closely. This allowed me to integrate it as a roadmap for as to how to conduct my project 
and achieve the goals. For me, it was important to write this paper independently and not in pairs. I 
wanted to feel that I was fully accountable for the final outcome and that I would have full ownership 
of all aspects. I also feel that I have grown a lot when it comes to searching, finding, and summarizing 
scientific literature. I have spent a great deal of time doing so throughout this project, and I believe 
that it has been one of the most meaningful parts of the course. Potentially a goal that could have been 
better achieved would be the one relating to analyzing and criticizing scientific literature. I do believe 
that I have done so mentally, especially when selecting which work to reference in my thesis. 
However, I have not necessarily expressed these thoughts in writing in my paper. At least not beyond 
the definition of my research problem, which of course can be seen as a criticism of previous scientific 
work.  

• How did the planning of your study work? What could you have done better? 

I am happy with how I planned my work. I wrote my Bachelor’s thesis at DSV, meaning I was already 
familiar with the important steps and milestones in the thesis course. During the first week of the 
course, I made a week-by-week planning of the entire project. The planning was detailed, but not 
overly so since I was aware that things would change along with my learning curve. A also made sure 
that I had a good margin of time, in case some parts of the project took longer time than expected. The 
one thing I would do differently is to schedule starting the results chapter later than I did. I had a 
notion that I needed more time than I did to complete it, as well as the discussion, but I realized that 
this was not the case. I would have rather spent some more time tuning my models and improving my 
experimental setup rather than stressing over when to start writing the results.  

• How does the thesis work relate to your education? Which courses and areas have been most 
relevant for your thesis work? 

I would say that my thesis is highly related to my chosen specialization. The study contributes to the 
area of NLP, which is an important part of the Data Science domain. The courses that helped me the 
most in conducting this study are Programming for Data Science, Data Mining in Computer and 
System’s sciences, Research Topics in Data Science as well as Scientific Communication and 
Research Methodology.  

• How valuable is the thesis for your future work and/or studies? 

I believe that it has been highly valuable. First of all, I have improved my overall skills in Python, and 
especially when it comes to handling and modeling large amounts of data. I also find it very useful 
that I now fully grasp the different phases in the machine learning/data science process. This has gone 
from being some abstract image on a lecture slide, to something that I have implemented myself over 
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and over again. Before I knew of these phases, now I understand them and they are in my long-term 
memory. 

• How satisfied are you with your thesis work and its results? Why? 

I am satisfied and proud of my work. I had very limited knowledge in the areas of machine learning 
and NLP before starting this course, but I still managed to produce something that I believe is of a nice 
quality. I used a divide and conquer technique, and made sure to do my best in every little part. I also 
believe that there is a level of innovation to this thesis. I have had a hard time coming across 
something similar, but I see it as obvious why this kind of research is needed. Explainability is 
growing, and it is only natural that different ways of using it keep evolving. I am also happy that the 
decision was made to use the measure the sensibility of the LIME weights by using the token 
probabilities as ground truth values. This was an idea that emerged later in the project, and I believe 
that it added much more nuance to the results.  

 
 
 
 
  


